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ABSTRACT

A disk around a star is the initial configuration commonly accepted for the material that forms 
a planetary system such as our own. In this work, the first stage in the evolution from a disk to a set of 
planetesimals is studied. This stage consists in the formation of dense regions, which are able to collapse 
into objects that are the seeds for planet formation. This process is examined for a stationary configuration 
containing two dense rings, fixed in Keplerian radii and with mass continually increasing with time, which 
was reported in a previous study as the final outcome of a hydrodynamic simulation of a cloud collapse 
toward a star (Nagel, E., 2007, Rev. Mex. Astron. Astrof., 43, 257-270). Results indicate that in such a 
configuration the rings will eventually acquire enough mass to be prone to gravitational instabilities, 
which will cause fragmentation. The existence of unstable modes allows estimating typical sizes of the 
collapsed objects, given by the unstable wavelengths. Ring masses may be found via the mass surface 
density of the analysed model. The conclusion is that the unstable rings contain enough mass to result in 
the fragmentation and formation of planetesimals, which eventually accumulate in objects with masses 
typical of planets in the Solar System. 
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RESUMEN

Un disco alrededor de una estrella es la configuración inicial comúnmente aceptada para el material 
de donde provienen los sistemas planetarios como el nuestro. En este trabajo se estudia la primera etapa 
de la evolución de un disco a un conjunto de planetesimales, la cual consiste en la formación de regiones 
suficientemente densas para colapsar y formar objetos que sean la semilla para la formación de planetas. 
Este proceso se examina para una configuración estacionaria que contiene dos anillos densos, fijos en 
radios keplerianos y cuya masa aumenta continuamente en el tiempo, la cual se obtuvo en un estudio 
previo como resultado de la simulación hidrodinámica del colapso de una nube hacia una estrella (Nagel, 
E., 2007, Rev. Mex. Astron. Astrof., 43, 257-270). Los resultados indican que una configuración de este 
tipo permite asegurar que eventualmente los anillos adquieran masas suficientemente grandes para ser 
propensos a inestabilidades gravitacionales que los puedan fragmentar. La existencia de modos inestables 
permite estimar tamaños típicos de los objetos colapsados, dadas las longitudes de onda inestables. Con 
la densidad superficial de masa del modelo analizado es posible encontrar las masas de estos objetos. La 
conclusión a la que se llega es que los anillos inestables contienen suficiente masa para que el resultado 
de la fragmentación forme planetesimales que eventualmente puedan acumularse en objetos con masas 
típicas de los planetas del Sistema Solar.

Palabras clave: discos de acreción, inestabilidades gravitacionales, hidrodinámica, anillos.
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INTRODUCTION

It has been well known for many decades that gravi-
tational instabilities (GI) are an important mechanism for 
the collapse of clumps in protoplanetary disks, the seeds of 
planets. Studies of systems such as our own are important 
to understand the origin of other planets; of course, Earth’s 
origin is also a very interesting subject. Based on this idea, 
Cameron (1978) studied several disk models, characterized 
by parameters such as the angular momentum and mass 
accretion rate of a cloud that collapses to form a star-disk 
system. His conclusion was that at many times of its life, the 
disk was unstable against axisymmetric GIs. Thus, rings that 
are prone to collapse would form, with a planetesimal as a 
likely outcome. However, the dynamics of the collapse was 
not taken into account by Cameron (1978); he assumed that 
the gas falls onto the disk at the position where the specific 
angular momentum of the infalling particles equals that of 
the material already contained in the disk. This assumption 
is not true if the correct solution for the trajectories of the 
collapsing material (Cassen and Moosman, 1981; Ulrich, 
1976) is used. Thus, in this paper I follow the work by Nagel 
(2007), in which a dynamically correct initial configuration 
is given.

The importance of the work by Nagel (2007) is that, 
from the cloud collapse, a configuration with dense zones 
can naturally be produced. The disk is characterized by two 
dense rings located at Keplerian radii, positions where the 
gravitational force of the star is compensated by the centrifu-
gal force. The rings are in equilibrium because their central 
parts correspond to a density maximum; hence, there are no 
pressure forces. This pattern is stationary in the sense that 
increasing disk size (due to material with ever-increasing 
angular momentum, continuously falling from the cloud 
toward the disk) is followed by motion of the rings to new 
equilibrium positions. During this process, the mass of 
the disk increases, such that the rings accumulate material 
at a constant rate. All the details of this configuration can 
be found in Nagel (2007); the salient feature is that a disk 
configuration physically consistent with the collapse of the 
cloud that forms it, has dense zones that at some time are 
able to activate GI.

Gravitational instabilities were studied by Nakamoto 
and Nakagawa (1994) in a disk evolving due to viscosity 
and accounting for the cloud material that continuously 
falls into it. The model includes self-gravity, viscous heat-
ing, and accretion shock heating. The arrival to instability 
was studied using the Toomre parameter (Toomre, 1964), 
which gives a mass threshold for axisymmetric gravitational 
instabilities. The disk is formed by the accretion of mate-
rial from the cloud; however, the evolution is followed on 
a longer time scale than the one analysed in Nagel (2007). 
Thus, the disk structure found in the latter is not present in 
the former. For the purposes of this paper, the use of Nagel 
(2007) model is more appropriate.

Another attempt to characterize the disk at the stage 

of disk formation was developed by Tomley et al. (1991). 
They used the falling solution of Cassen and Moosman 
(1981) as initial condition, giving a surface density that 
increases linearly in time —the same dependence found 
by Nagel (2007) for the stationary state. Simulations were 
given with a parameterized cooling and the instabilities were 
monitored with the parameter given by Toomre (1964). In 
this way, they demonstrated that the evolution of unstable 
states is strongly dependent on the cooling efficiency. There 
is a difference in the stationary state between Tomley et 
al. (1991) and Nagel (2007), however. In Nagel (2007), 
the full dynamical evolution in the disk plane is followed, 
thus, I consider that the disk pattern found in the latter is 
more reliable. 

Instability due to self-gravity is not the only mechanism 
that generates regions with increasing density that eventually 
could collapse to form a planetesimal. Youdin and Goodman 
(2005) found that interpenetrating streams of solids and 
gas in a Keplerian disk produce a local, linear instability, 
without requiring self-gravity of the clump. Numerical 
simulations were developed by Youdin and Johansen (2007) 
and Johansen and Youdin (2007). The first paper confirms 
the analytical values for the instability growth rate and the 
second one studies the nonlinear behaviour, characterizing 
the density enhancements. The fate of these regions inside 
a realistic picture of planetary formation must include self-
gravity and collisions of the solid particles.

The evolution of solids and gas in a disk with viscos-
ity parameterized with α (Shakura and Sunyaev, 1973) is 
presented in Stepinski and Valageas (1996a, 1996b). The 
most important physical result given by these authors is 
that small particles are strongly coupled to the gas, in the 
sense that the particles follows the gas motion. For larger 
particles, which have coagulated from smaller ones, the 
evolution differs appreciably. They are decoupled from the 
gas, so the velocities of both components are not the same. 
In this case, interactions like gas drag become relevant. 
Afterwards, the system evolves until the gas density is 
reduced to levels where the only relevant force that acts on 
a solid body is the gravitational interaction with the rest of 
the solid. Stepinski and Valageas (1996a) also followed the 
coagulation, sedimentation and evaporation/condensation 
of the particles. They found particles with sizes up to 105 
cm at times t= 105 yr from the beginning of the evolution. 
The solids are initially given by 1 mm particles uniformly 
distributed and with a density of one percent of the gas 
density. These large particles are completely decoupled 
from the gas; thus, their position is not dependent on gas 
drag and they will continue to grow in mass at the expense 
of solid and gaseous material in the disk. The time scale 
for the evolution depends on the viscosity parameter α; the 
disk evolves more slowly for a lower value. Unfortunately, 
this value is difficult to restrict by observations, and thus, 
the times scales for the evolution are not well-known. An 
important thing to point out, which is clearly stressed by 
Stepinski and Valageas (1996b), is that the final outcome in 
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use the fact that typical velocities of the material falling to 
the star-disk system are supersonic, so that a ballistic de-
scription is ad hoc for the purpose of the paper. The cloud 
is axisymmetric and rotates uniformly. In this solution, the 
material falls towards the star, however, because of rotation, 
the trajectories never touch the star. This set of particles will 
arrive from above and below the plane perpendicular to the 
angular velocity axis that contains the star. Any particle 
coming from above (below) has a twin coming from below 
(above) as in a mirror image. The interaction of this huge 
set of pairs results in a shock parallel to the plane. Thus, 
the shocked material is restricted to move in the plane, and 
will form the disk.

The material deposited in the disk has a negative ra-
dial velocity. Due to this, the particles will move within the 
plane, initially moving towards the star, until they arrive to 
their pericenter, the closest approach of the orbit with respect 
to the star. At this position, which is different for each ring 
(the system is axisymmetric), the material will begin to 
move in the opposite direction. The collective behaviour of 
these particles is represented by a dense ring, which becomes 
denser and more massive as its outward evolution proceeds. 
This ring eventually will arrive to an equilibrium location at 
the Keplerian radius (which depends on the specific angular 
momentum) associated with it. The calculation of this radius 
is straightforward, because the material that is continuously 
incorporated into the ring mixes perfectly with the mate-
rial that is already there. Thus, the outcome is a ring with 
constant specific angular momentum ().

The formation and evolution of the dense ring can 
be explained by analysing the dynamical evolution of the 
material that arrives at the disk plane. Moreover, a continu-
ous flux of material from the cloud does not change the key 
elements of the explanation given in the last paragraph. A 
well-defined structure, moving with positive radial veloc-
ity, i.e., the ring, will clear the material on the inner side 
of the disk, where fresh material from the cloud can be 
incorporated. This matter will evolve as does the material 
forming the ring, thus, an inner dense ring is also produced. 
This two-dense-ring pattern is maintained during the infall 
stage of the cloud, hence, this configuration is stationary, 
see Figure 1. 

A physical way to explain this (for a more complete 
description see Nagel, 2007), is as follows: a rigidly rotat-
ing cloud is feeding the star-disk system; in such a cloud, 
 increases from zero at the rotation axis to a maximum 
value in the disk plane. Taking any two particles, the one 
with the larger value for  will arrive further out in the disk, 
due to  conservation. A particle with =0 will fall to the 
star. The picture that emerges from these ideas, based on 
the simulation presented in Nagel (2007), is that the cloud 
can be divided into three parts: the part with smaller val-
ues for  will feed the star, the part with larger values for 
 will eventually end in the outer dense ring, and finally, 
the intermediate  region will be associated with the inner 
dense ring.

a disk composed of solids and gas strongly depends on the 
initial conditions. In other words, the final density profile 
differs for each initial density configuration. For example, 
one such initial density profile is given by the “Minimum 
Solar Nebula’’ model, a gas disk with the mass of the plan-
ets increased to solar abundances; the mass of this disk is 
between 0.01 and 0.02 Msolar.

This work analyses the chances for a dense ring in the 
disk described by Nagel (2007) to reach instability within 
the framework of planet formation. Extensive details of 
other mechanisms can be found in Wetherill (1980).

The instabilities described in the main body of this 
paper result in a set of solid objects immersed in a gaseous 
disk, but their final fate is beyond the scope of this paper. For 
a recent paper on the evolution of such objects, including the 
accretion of other bodies, gas accretion onto the cores thus 
formed, their secular migration, and the characterization of 
the resulting planetary systems in terms of the distribution 
of masses and semimajor axes of the planets, I recommend 
the work by Ida and Lin (2004). The growth of a core by 
the accretion of planetesimals and its migration toward the 
star was studied by Chambers (2006). 

STATIONARY TWO DENSE-RING-PATTERNED 
DISK INSIDE A COLLAPSING CLOUD 

Almost all theories for the formation of planets be-
gin with a disk around a star. Two main points sustain this 
assertion. The first is that the planets and the disk contain 
angular momentum. The second is the fact that the planets 
in the Solar System are rotating in the same plane, reminis-
cent of a flat disk. Thus, in this paper, I also begin with this 
assumption. An additional assumption is that processes in 
the disk, during its formation by material falling from the 
progenitor cloud, are able to create a configuration prone to 
form dense objects that could be the seeds of planets. The 
physical mechanism on which this work is based is the ac-
tivation of gravitational instabilities (GI) by the presence of 
dense zones in the disk. By definition, a GI requires a dense 
zone to begin with, and an instability means that an increase 
in density will lead to an even higher density. This process 
works as a chain reaction, until some other mechanism is 
able to halt the collapse.

For instance, Boss and Bodenheimer (1979) were 
able to produce such dense zones in numerical simulations 
of cloud collapse by explicitly putting in small density 
perturbations. Instead of such initial perturbations, I use a 
massive ring to obtain the same result.

The main premise in this work is that a disk with a 
physical mechanism to form dense zones is a natural system 
for the study of GI processes; these dense zones then col-
lapse to form planetesimals. A disk with dense zones is the 
outcome of a hydrodynamical simulation for cloud collapse 
developed in Nagel (2007). The initial condition in density 
and velocity was taken from Ulrich (1976). These works 
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From the point of view of spectral modeling of stars 
with disks (Adams et al., 1990; D’Alessio et al., 1997; Lay 
et al., 1997; Kikuchi et al., 2002), it is practical to have a 
model for the disk that can be fitted to any total mass. In 
the model described in Nagel (2007), the ratio between the 
masses of the two rings is constant. The mass surface density 
S, in terms of radius, for a disk with mass Md = 0.02 Msolar 
is shown in Figure 2, where Rd is the maximum Keplerian 
radius. This paper will focus on the study of GIs that also 
require a disk (or rings) with any specified mass. In the two-
ring disk model (Nagel, 2007), it is easy to calculate the time 
when either ring becomes unstable, establishing in this way 
a powerful tool to model these disks. The study of GIs for 
some disk states will be described in the next section.

GRAVITATIONAL INSTABILITIES THAT BREAK 
THE RINGS

In an equilibrium state of all the external forces, a 
region denser than the surroundings can become unstable if 

the density is larger than a threshold value. In this case, the 
self-gravity of the unstable clump will dominate, resulting 
in collapse. In this section, various configurations prone to 
instability will be reviewed and applied to the stationary disk  
with two dense-rings described in the previous section. 

Instabilities in a gaseous disk 

The first gravitational stability criterion well-known 
to astronomers is the Jeans criterion (Jeans, 1928). This 
criterion is applied to a non-moving fluid of density ρ. The 
material is stable if

	 kT
2cs

2 > 4�Gρ, 	 (1) 

where cs is the sound velocity, G is the gravitational constant 
and kT is the total wave number of the (un)stable mode.

In the case of a fluid that is uniformly rotating and 
has infinite thickness, some modes with wave vectors per-
pendicular to the rotation axis are unstable (Chandrasekhar, 

0.1

Z

0
0 0.5 1 1.5R

Figure 1. R-Z plane in the hydrodynamical simulation of Nagel (2007) with contours of equal density, ρ (solid line) and contours of equal specific angular 
momentum,  (dotted line). R and Z correspond to a cylindrical radius and a vertical coordinate, respectively. The values of the ρ contours are given by 
ρo/2a (a=3,4,5,6,7,8). The values of the  contours are 0.1, 0.2,..., 0.7, 0.71, 0.73, 0.75, 0.77, 0.79, 0.8, 0.9 from left to right. The plot is shown at 2000 
years for the parameters used, when the stationary configuration is reached. The arrows represent the direction of the velocity for the particles that are 
accreting to the disk.
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1961). The stability criterion then becomes
 

	 k 2cs
2 > 4�Gρ - 4Ω2 , 	 (2)

where k is a wave vector restricted to the plane perpendicular 
to the rotation axis, and Ω is the magnitude of the angular 
velocity. Thus, rotation has an influence in defining the 
unstable wavelengths.

Using the definition k =2�/λ, I conclude that the mini-
mum unstable wavelength is

	  (3)

for a rotating gaseous disk. This result means that the out-
come of an unstable structure would be a set of objects with 
characteristic sizes larger than λmin. From the disk with Md= 
0.02 Msolar described in Nagel (2007), I take the value for the 
typical density in any of the dense rings (ρ= 2×10-13 g cm-3), 
the angular velocity at the center of the rings (Ωi and Ωe, for 
the inner and outer rings, respectively) and sound velocity (cs 

= 3.57×104 cm-1) of a cloud at T= 15 K composed of atomic 
hydrogen. This set of values, substituted in Equation 3, al-
lows finding an imaginary λmin, which means that the stability 
criterion given in Equation 2 is fulfilled. Hence, the system 
is stable and there are no unstable wavelengths.

For specified values of the stellar mass, Mstar, and disk 
radius, Rd, the value of Ω at the center of each ring will be 
fixed. Thus, �Gρ > Ω2 can eventually be fulfilled, because 
ρ increases monotonically with time. The minimum density 
for unstable modes to appear is ρunst,i = Ωi2 /�G = 0.272×10-10 
g cm-2 for the inner ring and ρunst,e = Ωe2 /�G = 0.881×10-12 
g cm-2 for the outer ring.

It is noteworthy that the previous values allow con-
cluding that the outer ring is the first to become unstable 
and prone to form cores that could be the seeds for the 
outer planets. The instability criteria for a dust layer around 
the disk midplane discussed in the following section also 
show that the outer ring becomes unstable before the inner 
one. The mass of the gas objects thus formed is not the 
final mass, because additional gas and solid objects can be 
accreted by them. A study of this process for a solid body 
slowly increasing its mass with material that comes close 
enough to be trapped in its gravitational well can be found 
in Hayashi et al. (1977). As previously mentioned, the fate 
of the collapsed objects is beyond the scope of this paper; 
the qualitative approach given here estimates typical sizes 
of the bodies but does not give a detailed account of the size 
distribution. The answer to this problem is addressed with 
full hydrodynamical simulations in protoplanetary disks 
(Boss, 2001; Mejía et al., 2005; Boley et al., 2006). For the 
stationary configuration described in the previous section, an 
appropriate simulation will be developed in the future.

Goldreich and Lynden-Bell (1965) solve the problem 
for a disk with finite thickness that is uniformly rotating. The 
typical size of the unstable wavelength is found, with a value 
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around the thickness of the disk, H. The results from that 
paper can be applied to the disk described in the previous 
section, where the angular velocity (Ω) depends on radius, 
by noting the following: First, the disk is geometrically 
thin, H << R. In this case, a typical unstable wave will not 
cover a large radial zone, so that the angular velocity (Ω) 
is approximately constant, thus fulfilling the Goldreich 
and Lynden-Bell (1965) assumption. For the two-ring disk 
model, the disk is considered isothermal (Nagel, 2007), thus 
I concentrate on a fluid with an equation of state given by P 
 ρ, where P is the gas pressure. Goldreich and Lynden-Bell 
(1965) also give stability criteria for gases described by P 
 ρ2 and P  ρ∞; the latter corresponds to an incompress-
ible fluid. For an isothermal disk, the stability criterion can 
be written as:

			    . 	 (4)

Application to a two-ring disk
Equation 4 can be used for the two-ring pattern disk 

described in the previous section, for characteristic values 
of ρ and Ω. These values can be taken from Nagel (2007), 
estimating ρ using the relation ρ=S/H with S and H given 
as typical values, and Ω as the Keplerian angular velocity 
of the center of either of the rings. From here on, variables 
with a subscript i refer to the inner ring while those with the 
subscript e refer to the external ring. The instability criterion 
is applied to a disk with mass Md= 0.02 Msolar, where Si= 10 
g cm-2, Se= 30 g cm-2, Hi= 3 AU, He=10 AU, Ωi= 2.39×10-9 
s-1 and Ωe= 4.3×10-10 s-1. Both H values for the rings are 
taken from Figure 1. The typical S values for the rings are 
shown in Figure 2. From these data, ρi and ρe are almost the 
same, thus, the typical value for both rings in a disk with 
this mass is ρ = 2×10-13 g cm-3. Substitution of these values 
in Equation 4 gives Ii= 0.00184 and Ie= 0.0567. Thus, for a 
disk with Md= 0.02Msolar, both rings are stable to this kind 
of instability. This result is expected for a disk much less 
massive than a solar mass. A more massive disk can be eas-
ily produced, allowing the accretion from the cloud to last 
longer. In the model by Nagel (2007), Md and Ω increase 
and decrease as a function of time, respectively, in the same 
proportion for both rings. On the other hand, assuming that 
the thickness of the disk is time independent during the time 
it takes to reach a gravitational instability state, then Ie/Ii 

does not depend on time either. At this particular moment, 
Ie and Ii have the ratio Ie/Ii= 30.89. At the time when the 
outer ring reaches an instability state (Ie= 0.73), Ii=0.024, 
so it is far away from an unstable configuration. A strong 
and valuable conclusion is that the outer ring becomes 
unstable before the inner one. The relevance of this result 
is that with a large mass reservoir there is a chance to form 
large solid objects, which are first produced on the outer 
side of the disk. Hence, if this instability is responsible for 
the formation of the planets, the outer planets are formed 
before the terrestrial planets. This attractive suggestion is 
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based on the assumption that the outer and inner planets are 
formed from the outer and inner dense rings. However, in 
order to prove this idea, a complete treatment of the problem 
is required, including all the elements that characterize the 
physical processes relevant to it, elements able to describe, 
for instance, the growth and evolution of the planetesimals 
toward their final (gas free) configuration.

Goldreich and Lynden-Bell (1965) provided a critical 
wavelength (λcrit), and showed that some modes with wave-
lengths around this value are unstable. For the isothermal 
case λcrit= 4.49 H; using this length, the mass of a collapsed 
object is given by M = λcrit

2Hρ. For the stable case given 
by the disk with mass Md = 0.02, Mi= 0.18×10-3 Msolar and 
Me= 6.7×10-3 Msolar. The first (second) is almost an order of 
magnitude smaller (larger) than the mass of Jupiter, thus I 
conclude with this simplified analysis that the outer dense 
ring is able to produce objects of the mass of Jupiter. In any 
case, the planetesimals that form by this mechanism are gas-
eous, like the ones found by Boss (2001), which performs a 
full three dimensional simulation of a self-gravitating disk, 
with heating and cooling, including radiative transfer in the 
diffusion approximation.

The Goldreich and Lynden-Bell instability is associ-
ated to a disk, but the important feature in the pattern found 
by Nagel (2007) is the clearly defined rings. Yabushita 
(1966, 1969) studied the stability for a (Saturn-like) ring 
with inner radius a and outer radius b, where the density 
smoothly decays to zero. The non-perturbed configuration 
is given by the equilibrium between the centrifugal force, 
the gravitational force of the planet (or star) and the self-
gravity of the ring. The density distribution of the ring that 

was studied is axisymmetric and is given by
			 

		  . 	 (5) 

In this equation, the value for λ can be calculated 
using the fact that the density is zero at r = a, and also at 
r= b. J0 and Y0 are Bessel functions of the first and second 
type, respectively.

Yabushita (1966, 1969) found the critical mass (Mcrit) 
for instability in terms of the ratio a/b. For two values for 
this ratio, his result were

	 Mcrit = 0.0386 Ms, a/b= 0.2, 	 (6)
	 Mcrit = 0.0109 Ms, a/b= 0.5,

where Ms is the Saturn mass. For the two-ring disk, the mate-
rial is moving around the star, thus, Ms corresponds to the
mass of the star.

This result can be applied to the inner and outer dense 
rings described previously. For the outer ring, a= 0.4 Rd 
and b= 0.8 Rd, so, a/b=0.5; and for the inner ring, a= 0.1 
Rd and b= 0.3 Rd, so, a/b=0.33. These values and the ones 
given at the beginning of this section, in Mring=ρ�(b2-a2)H, 
can be used to find the mass associated with each ring. As 
before, subscripts i and e refer to the inner and outer rings, 
respectively. From this relation, Mring,i= 0.0025 Msolar and 
Mring,e= 0.05 Msolar. Compared to Equation 6, this means that 
the outer ring is gravitationally unstable and the inner one is 
stable. Note that from the analysis of Goldreich and Lynden 
Bell (1965), the material in the ring is stable; however, the 
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Figure 2. Surface density S vs. radius R for a disk with mass Md= 0.02 Msolar. R is given in units of the maximum Keplerian radius (Rd) and S in g cm-2. 
This surface density corresponds to an axisymmetric disk viewed pole-on.
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this mechanism to a real disk is that the settling of material 
towards the midplane should be accomplished in a non 
turbulent medium. Unfortunately, the difference in velocity 
between the particulate-dominated subdisk and the sur-
rounding gas disk is able to produce turbulent eddies, which 
invalidate the previous assumption. Some years later, the 
same author (Sekiya, 1998) confirmed the impossibility of 
the gravitational instability occuring in a turbulent dust layer 
unless the ratio of dust to gas surface density is enhanced 
over cosmic values.

Finally, Youdin and Shu (2002) surmounted this 
problem by describing possible mechanisms to increase 
the solids to gas ratio, with respect to the “Minimum Solar 
Nebula’’, to the values required for the GI to appear. The 
solids include metals, silicates and even ice; the latter is 
taken into account if the location is outside the “ice line’’, 
a boundary that divides a region far away (close to) the 
star, where the ice can(not) survive. Another element that 
is important to consider is that some materials are volatile 
at sufficiently high temperatures (Gómez and D’Alessio, 
2000). Thus, the dust concentration will strongly depend 
on the temperature profile of the disk. 

The advantage of this planetesimal formation mecha-
nism is that the relatively small amount of gas with respect 
to solids represents a gas depleted configuration, which 
reduces the influence of gas (by drag, for example) in 
the nascent planets. In other words, the reduction of tidal 
interaction between a core and the gaseous disk should 
reduce the rate of migration towards the star, improving 
the chances for survival. 

Application to a two-ring disk
The main assumption in the Goldreich and Ward 

(1973) analysis is that the medium is non turbulent in the 
sense that solids floating in the gas will continuously settle 
towards the midplane (Kusaka et al., 1970), forming a high 
density dust layer. For the case of a dense, two-ring disk, 
the particles fall from the cloud and then move within the 
disk until they arrive to one of the dense rings. Because the 
velocity is well defined at each point and, more importantly, 
because the velocity at each position varies slightly in time, 
I can safely assume that the system is non-turbulent. Another 
argument in support of this is that from the outskirts to the 
center of the ring, the magnitude of the radial velocity con-
tinuosly decreases. Exactly at the center, this velocity is zero, 
thus, the motion towards this point is smooth. As a result, 
two particles in collision trajectory avoid the interaction, 
because they will halt at the last moment. This kinematic 
configuration is not consistent with the one required to 
“create’’ turbulence; thus, I assume that the material will 
eventually arrive to the center of the ring. The matter that 
arrives to the center should be composed of dust and gas. As 
in Kusaka et al. (1970), the dust will settle in the midplane 
disk. The resulting increase in dust density will enhance the 
collision rate, hence, the solid particles will grow in size. 
This is the essential fact required for the aim of this paper. 

analysis presented here should be more precise because the 
ring is better characterized. Probably, the objects formed by 
this instability require coagulation between them to form an 
object massive enough to resemble an outer planet of the 
Solar System. As a general conclusion, the study of both 
stability criteria mentioned in this section give an argument 
in favour of the formation of clumps of the size required 
to form the seeds of objects as large as the planets of the 
solar system. 

Instabilities in a dust layer around the disk midplane

The instabilities described up to now only consider a 
gaseous disk, an thus a solid core cannot be produced. The 
next step was taken by Goldreich and Ward (1973); they 
considered a thin disk of particulate matter that forms from 
material that sinks towards the disk midplane. This process 
begins with the condensation of metals and silicates during 
the cooling of the disk, which results in a distribution of 
small grains.

These particles move towards the midplane through 
the gas; the forces that determine their dynamical evolution 
are the vertical component of the star gravity and the gas 
drag force. The amount of material accumulation in the mid-
plane disk is characterized by a dust density, S. This density 
can be used in the dispersion relation for local axisymmetric 
perturbations (Goldreich and Ward 1973), given by

	 2 = k 2cs
2 + k2 – 2�GSk, 	 (7)

where k2=2Ω[Ω + d(rΩ)/dr], and  is the rate of exponen-
tial increase of the perturbation. The original derivation of 
this relation was constructed for a system made of gas; for 
its application to a dust disk it is necessary to consistently 
define an appropriate cs. Goldreich and Ward (1973) argue 
that cs= 0 is a reasonable assumption, thus, from Equation 
7, the critical wavelength can be written as

				     , 	 (8)

where a Keplerian disk (Ω  R-3/2) is assumed.
Axisymmetric perturbations with λ < λc are unstable. In 

such cases, the larger fragments obtained with this mecha-
nism are of size λc. Goldreich and Ward (1973) calculated λc 
at the actual position of the Earth’s orbit, using the Keplerian 
angular velocity Ω = 2×10-7 s-1 and an estimated S~7.5 g cm-2 
implied by the mass of the terrestrial planets. Using these 
values, a critical wavelength of λc~5×108 cm is obtained; 
the typical mass of an object of this size can be found from 
m~S λ2

c, which gives m~2×1018 g. 
A more detailed study of this instability was given 

by Sekiya (1983), who found a threshold in the density of 
particles and gas in terms of the distance r from the star 
of mass Mstar. However, a drawback for the application of 
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In other words, there is a real mechanism able to increase 
the solid density up to levels where the Goldreich and Ward 
gravitational instability can operate

Given the justification in the last paragraph, the 
method presented in this section can be applied to the pat-
tern with two rings of Nagel (2007), with the following 
procedure: Equation 8 is applied to the inner and outer dense 
rings, getting for the former λc,i= 4.617×1012 cm and for the 
latter λc, e= 4.279×1014 cm. Note that there is a huge differ-
ence for the sizes between the unstable fragments in a ring 
located at the actual position of the Earth, and those values 
estimated for the dense rings in the model of Nagel (2007). 
This is due to the fact that the surface densities are of the 
same order but the angular velocities are two to three orders 
of magnitude lower for the rings in the latter case. Rotation 
has a stabilizing effect (see Equation 7), thus, slower rota-
tion can naturally produce larger objects. Note that λc,i is an 
order of magnitude less than the thickness of the disk at the 
position of the dense inner ring, however, λc, e is of the same 
order as the disk thickness at the outer dense ring position. 
In the last case a wavelength can just fit in the height of the 
disk, thus, this result is marginally correct. 

The mass associated to an inner fragment is mi~ Siλ2
c,i= 

1.13×10-4 MJ and for an outer one me~Seλ2
c,e= 2.906 MJ, 

where MJ is the Jupiter mass. An interesting conclusion is 
that fragments as massive as Jupiter can be produced with 
this mechanism, however, this result should be taken with 
caution because of all the assumptions made. Also, it is 
required that excitation of this specific mode be possible, 
in the frame of a consistent and complete picture based on 
an appropriate simulation.

From this qualitative picture only typical sizes and 
masses for the fragments can be extracted. For a quantitative 
picture, a detailed analysis of the dynamical evolution of 
the solids that eventually will arrive to the center of the ring 
and coalesce there is needed. The material will move from 
the edges of the ring towards the center. This behaviour is 
given by the dynamics of the collapsing cloud in a way that 
promotes the accumulation of material at the center of the 
ring. Following this process, the most likely outcome for 
particle agglomeration by collisions will be the formation 
of larger particles. On the other hand, if the dust-gas density 
ratio increases, then the Goldreich and Ward instability can 
appear. The next question is: how will the solid material 
already in the ring evolve? Haghighipour and Boss (2003a, 
2003b) developed a simulation of the interaction of the sol-
ids immersed in a gaseous disk –in the size range of microns 
to 100 m objects– with the disk itself, around a local density 
enhancement. They take into account the hydrodynamical 
forces due to the density profile and the drag force of the 
gas. Their main conclusion is that the particles rapidly mi-
grate towards the location of maximum density. This result 
moves in the right direction, promoting the accumulation 
of material at the center of any of the rings when the cloud 
is exhausted, i.e., the time when planetary formation is 
expected to take place. A following paper (Haghighipour, 

2005) studied the same system but took into account the 
growth of micron-sized particles up to a few centimeters 
in several tens of thousands of years.

In conclusion, there are mechanisms acting in the 
presence of a density enhancement that promote the growth 
of the particles and sedimentation around the center of 
the dense ring. These mechanisms will eventually create 
a configuration prone to gravitational instabilities in the 
Goldreich and Ward sense.

DISCUSSION

The fate of density enhancements in the form of 
clumps or rings is not easily addressed because many in-
gredients work in favour of or against their fragmentation 
and/or collapse to objects that resemble planetesimals. The 
self gravity of a ring promotes its fragmentation because 
this force is directed towards its center. On the other hand, 
the cooling (heating) of the material, reduces (increases) 
the pressure support against collapse. In the hydrodynami-
cal simulations of Mejía et al. (2005), these processes are 
taken into account, and the result is disk fragmentation; 
however, the fragments have a brief life. In a following paper 
(Boley et al., 2006), more realistic cooling (D’Alessio et 
al., 2001) was considered, in which the dust opacities are 
carefully calculated. This influences the cooling in such a 
way that the cooling times are longer, and fragmentation 
does not occur.

For the instability of a dust layer (Goldreich and Ward, 
1973) the dust particles must settle onto the midplane of the 
disk, something that can occur in a non turbulent medium. 
However, Supulver and Lin (2000) simulate a disk with 
global turbulence in which a single particle is followed; 
they found that condensation and sublimation of water 
are the processes that dominate the particle growth. These 
mechanisms are able to form icy planetesimals in the outer 
part of the disk. Thus, turbulence in the disk is not enough 
to prohibit particle growth to planetesimal sizes.

A simulation of the dust settling in a laminar flow 
disk is presented in Garaud and Lin (2004), and is followed 
until the onset of GI. This process was analyzed for vari-
ous ratios between the dust and gas surface density. They 
characterized the rate of growth of the perturbation, but not 
the spectra of the size distribution of the fragments. This 
will be one of our goals in the near future, applied to the 
two-dense-rings disk.

The application of the stability criteria discussed in 
the previous sections to a dense ring gives only character-
istic sizes for resultant fragments, whereas either the final 
outcome or the evolution towards larger objects resembling 
a realistic planetary system is not considered. 

Besides all the difficulties reviewed in this paper for 
a complete characterization of the final system, there is at 
least one more issue that should be taken into account. When 
two particles collide, there is a chance for the particles to 
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coalesce or, alternatively, they could fragment into smaller 
pieces, and thus, the growth of particles is not monotonic, 
due to destructive collision events. Agglomeration and frag-
mentation mainly depend on the relative velocity between 
the colliding particles. It is important to recognize that the 
problem at hand has many facets; here only a small piece 
of the puzzle is addressed. 

CONCLUSIONS

This work gives typical unstable wavelengths for 
gravitational instabilities in a disk with a two dense rings 
pattern. Using the density of an unstable location for the 
disk, typical masses for the collapsed objects can be ob-
tained. However, these results were obtained with an over-
simplified scheme; a detailed analysis for the contribution 
of the interaction between the gas and solids, heating and 
cooling mechanisms of the gas, etc., is required to conclude 
that the fragmentation can actually take place. 

For a disk with finite thickness and uniform rotation, 
Goldreich and Lynden-Bell (1965) found stable and un-
stable modes. In the two dense-ring model, for a disk with 
mass Md= 0.02 Msolar, both rings are stable. By increasing 
the mass of the disk, the outer ring is the first that turns 
unstable. The typical mass of a collapsed object is of the 
order of the Jupiter mass.

The stability of a gas ring was studied by Yabushita 
(1966, 1969). The mass of an unstable ring is much less than 
the mass of a typical fragment for the uniformly rotating 
disk. In the case of a disk with two dense rings, the gas ring 
instability criteria is probably better suited for a reasonable 
analysis. Thus, consistent with Yabushita (1966, 1969), the 
outer ring is unstable and the inner one is stable in a disk 
with mass Md= 0.02 Msolar.

For an instability in a Keplerian disk (Ω  R-3/2) with 
a dust layer in the midplane, as that described by Goldreich 
and Ward (1973), the dense rings produce larger collapsed 
objects than the material at the same position for a disk 
with a decreasing density profile. Besides, λc  Ω-2  R3, 
thus, the typical size of a fragment given by the break of 
the outer ring is larger than an object associated to the inner 
ring. This is an important result, because I speculate that 
the formation of the outer planets in the Solar System takes 
place in the outer dense ring while the inner planets form in 
the internal ring. A relevant fact supporting this conclusion 
is that the mass of an inner fragment is much less than one 
Jupiter mass, while the mass of a collapsed piece of the 
outer ring is of the order of one Jupiter mass.
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