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ABSTRACT

In this paper we review some open questions in the context of the structure observed in narrow 
planetary rings, and summarize some recent results of our work directed to answer them. Using the 
scattering approach to narrow rings we have succeeded to reproduce some of their structural properties 
in a qualitative sense, using unrealistic toy models as examples. We obtain narrow rings which are 
non-circular and display sharp edges. In addition, these rings may have multiple components which 
may entangle in a complicated dynamically evolving way forming a braided structure, or may display 
strongly azimuthal dependent features such as arcs. The appearance of these structural properties can 
be understood in terms of the underlying phase space.

Key words: narrow planetary rings, strands, arcs, scattering approach.

RESUMEN

En este artículo hacemos una revisión de algunas de las preguntas que permanecen abiertas 
en el contexto de la estructura observada en los anillos planetarios delgados, y resumimos algunos 
resultados recientes de nuestro trabajo encaminados a responderlas. Usando el enfoque de la dispersión 
en anillos delgados hemos reproducido algunas de sus propiedades estructurales de forma cualitativa, 
usando modelos de juguete irrealistas como ejemplos. Hemos obtenido anillos delgados no circulares 
que muestran bordes bien definidos. Además, estos anillos pueden tener componentes múltiples que se 
enredan de manera complicada y evolucionan dinámicamente formando estructuras trenzadas, o pueden 
exhibir estructuras con una fuerte dependencia azimutal como arcos. La aparición de estas estructuras 
se puede entender en términos del espacio fase subyacente.

Palabras clave: anillos planetarios delgados, componentes múltiples (hebras), arcos, enfoque de la 
dispersión.
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INTRODUCTION: OBSERVATIONS

Saturn rings are, since their discovery by Galileo in 
1610, one of the most puzzling and beautiful features of 
the Solar System. For a long time, Saturn had the special 
position being the “ringed planet”. In 1977, the somewhat 
accidental discovery of Uranus rings by stellar-occultation 

measurements (Elliot et al., 1977) changed this view, and 
led to a renewed interest in ring systems. The main reason 
for this was that the Uranian rings turned to be extremely 
different from those of Saturn: They are narrow, opaque, 
sharp-edged, inclined and eccentric (Elliot and Nicholson, 
1984; Esposito, 2002). To quote some figures (Murray and 
Dermott, 1999), the widest ring of Uranus, the ε ring, is 
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Figure 2. Structure in Saturn’s F ring. These four images taken by Cassini of Saturn’s F ring show the “knotted” structure in different locations. (PIA07522. 
Courtesy NASA/JPL/Space Science Institute-Caltech).

and around the outermost ε ring of Uranus; these discoveries 
represented a confirmation of the theory. The shepherding 
confinement involves angular momentum transfer between 
the shepherd moons and the ring particles, self-gravity and 
viscous damping due to inter-particle collisions (Borderies 
et al., 1983). While the full scenario for shepherding has not 

20−96 km wide with a nominal semi−major axis at 51,149 
km; in comparison, the main rings of Saturn are a few 
thousand kilometers wide. The Uranian rings were the first 
narrow planetary rings discovered, but are not the only ones 
that exist. The Pioneer mission and the Voyagers uncovered 
other narrow ring in Saturn, the F ring, showing an amazing 
and puzzling structure; occultation measurements pointed 
the existence of rings around Neptune; Jupiter’s broad rings 
were also discovered (see Esposito, 2002 for a detailed 
historical account). Figures 1-4 are photographs illustrat-
ing some examples of the variety of structure that is found.

These discoveries raised a number of new ques-
tions, most of which remain unanswered (Esposito, 2002; 
Sicardy, 2005). For instance, the eccentricity of the ε ring 
is 0.0079; Saturn's F ring has an eccentricity 0.0026. An 
eccentric inclined narrow ring like the ε ring is expected to 
circularize and spread in rather short time scales, tmax ~ 108 
years, which is “considerably smaller than the age of the 
solar system” (Esposito, 2002). This estimate follows from 
inter−particle collisions, drag and differential precession. 
Therefore, an efficient confinement mechanism must 
maintain these structural properties of the ring over longer 
time scales allowing, among other, an eccentric ring 
(Esposito, 2002).

To explain the structural features of the Uranian rings, 
new models were introduced where the confinement was 
induced by nearby moons. Among these models we mention 
in particular the shepherding model introduced by Goldreich 
and Tremaine (1979), where two moons around the ring 
were proposed to bound it. The Pioneer and Voyager mis-
sions detected the shepherd moons around Saturn’s F ring 

Figure 1. Uranus’ rings and the “shepherd” satellites of the ε ring discov-
ered by Voyager 2. The image was taken in January 21 of 1986 (PIA01976. 
Courtesy NASA/JPL/Space Science Institute-Caltech). 
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either the shepherds are there but are too small to be de-
tected, or “some physics is yet to be understood” (Sicardy, 
2005). Saturn’s F ring turned out to have a very rich dy-
namical structure (Smith et al., 1981; Smith et al., 1982; 
Murray et al., 1997): besides the non-zero eccentricity, it 
displays multiple components entangled in a complicated 
way, known as strands and braids, showing further puzzling 
features like kinks and clumps.

Numerical simulations have investigated a variety of 
physical interactions, like the gravitational perturbations of 
shepherd moons on circular and eccentric orbits (Giuliatti-
Winter et al., 2000; Showalter and Burns, 1982), effects due 
to the action of embedded moonlets (Lissauer and Peale, 
1986), and ring inter-particle collision effects (Hänninen, 
1993; Lewis and Stewart, 2000). The central questions 
investigated have been the formation of structure (strands, 
braids, clumps) and their short-term stability. While these 
studies have led to interesting predictions, e.g. the formation 
of channels and streamers (Giuliatti-Winter et al., 2000) 
which have been recently observed by Cassini (Murray 
et al., 2005), there is no self-consistent approach for the 
confinement of narrow rings and their radial and azimuthal 
structure. The F Saturn ring remains as the most fascinating 
and puzzling case.

The present paper reviews some of our recent work on 
this point, namely, a self-consistent scenario for the occur-
rence of narrow rings and the appearance of structure; we 
have called it the scattering approach. The first section is 
devoted to describe the basic ideas behind our approach. The 
next section we exemplify the emergence of structured rings 
within scattering approach using an unrealistic toy model. 
We obtain non-circular narrow rings with sharp edges, that 
may display multiple components and arcs. Our results are 
qualitative so far. Yet, the approach is robust and consistent, 
and can be applied –with the intrinsic complications that 
this entails– to more realistic situations. A following sec-
tion we describe the relevant phase–space structures upon 
which our dynamical approach is based. The last section is 
devoted to our conclusions and outlook.

THE SCATTERING APPROACH

Let us consider the (N+1) - body full Hamiltonian 
which describes the motion of a central planet of mass M0 , 
surrounded by Nm moons and Nr ring particles (N = Nm+Nr). 
In an inertial frame we have 

 ,         (1)

= H Km + V m-m + H Kr + V m-r + V r-r   .          (2)

In Equation (1), P i is the linear momentum of the 
i-th particle, with i = 0 representing the central planet, R
i is its position vector, Mi is its mass, and G is the gravita-
tional constant. Hence, Ecuation (1) is the full many-body 
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been fully understood (Esposito, 2002; Sicardy, 2005), the 
presence of dissipation seems to be essential; this is actu-
ally needed to avoid certain singularities (Ogilvie, 2007). In 
addition, the formulation assumes that the ring boundaries 
are located at a lower-order resonance.

Yet, Saturn’s F ring does not fulfill the requirements 
to apply this theory. Moreover, most Uranian rings have 
no associated shepherd moons around them (Murray and 
Thomason, 1990), nor some narrow eccentric rings of 
Saturn, which among others would provide an explanation 
for their sharp edges (Murray and Dermott, 1999). Thus, 

Figure 3. Ringlets in the Encke gap. (PIA08305. Courtesy NASA/JPL/
Space Science Institute-Caltech).

Figure 4. Neptune rings and Adam’s arcs as seen by Voyager 2 in 
August of 1989. (PIA01493. Courtesy NASA/JPL/Space Science 
Institute-Caltech).
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problem with gravitational interactions and Equation (2) is 
a convenient rearrangement: HKm is the Hamiltonian for the 
keplerian two-body interaction among the moons and the 
planet, and H Kr is the corresponding one among the ring 
particles and the central planet. The term V m-m represents the 
moon-moon gravitational interaction, V m-r is the moon-ring 
particle interaction and, finally, V r-r is the ring particle–ring 
particle interaction. In Equation (1) we have considered 
purely gravitational interactions; as we shall see, our ap-
proach is quite general for conservative interactions. The 
assumption of purely gravitational interactions is common 
because the interesting structural properties observed are not 
related with sub-micron size (dust) particles where radiation 
forces and electromagnetic interactions are indeed impor-
tant. For example, in Saturn’s F ring, initial photometric 
work on Voyager’s data indicated that this ring consists of a 
core of centimerter-size particles surrounded by micron and 
sub-micron material (Showalter et al., 1992); later analysis 
on the data gathered during Saturn’s ring plane crossing 
in 1995 suggested that the ring material is dominated by 
a population larger than ~10 mm with a lower cut off of 
0.3–0.5 mm (Bosh et al., 2002).

In the planetary case, there is a clear ordering of the 
masses, M0 ≥ Mm ≥Mr , with Mm/M0 ~10-8–10-4 and Mr/Mm 
even smaller. Here, Mm is a typical mass for the moons and 
Mr characterizes the mass of the ring particles. Therefore, 
in a first order approximation, we may neglect the contribu-
tions from V r-r , which are of second order in Mr . Physically, 
this amounts to ignore any effects due to ring inter-particle 
collisions. Moreover, due to the mass scales of the problem, 
the effect of individual ring particles in the motion of the 
planet or the moons can be neglected. This suggests to treat 
the motion of the individual ring particles as a restricted 
n-body problem. The motion of the central planet and the 
moons is solved consistently in a full many-body calcula-
tion. For the motion of the particles of the ring a solution 
of this many-body problem is used, which introduces an 
explicit time dependence. Therefore, the ring-particle 
Hamiltonian can be written as

(3)

where V0 refers to the dominating interaction with the central 
planet (H Kr ), and Veff  is the effective interaction due to the 
planetary moons. The explicit time dependence in Equation 
(3) is related to the specific solution of the full planet–moons 
problem used. This is usually a kind of oscillatory motion 
of the moons around the central planet. Therefore, such a 
solution introduces an intrinsic rotation in Equation (3), 
which in the best case is periodic or quasi-periodic. The 
restricted three-body problem is an example of Equation 
(3), where the intrinsic rotation is precisely the circular or 
elliptic motion of the two-body Kepler problem between 
the planet and the moon.

We consider now the dynamics of the Hamiltonian 
Equation (3). We shall be interested in those phase–space 

H = 2
1 P 2 + V X   t V X t0 eff( , ) ( , )+H = 2
1 P 2 + V X   t V X t0 eff( , ) ( , )+

regions that are dominated by scattering trajectories, i.e., 
by trajectories that escape to infinity. Despite of the domi-
nance of unbound orbits, trapping is dynamically possible. 
Notice that scattering trajectories define a precise physical 
mechanism for the particles to escape from the neighbor-
hood of the planet–moons system, which may then create 
structure in the ensemble of non-escaping ring particles; 
hence the name of scattering approach (Benet and Merlo, 
2004; Merlo and Benet, 2007). For simplicity we describe 
the case of two degrees of freedom, emphasizing that the 
following considerations can be generalized to more degrees 
of freedom.

For two degrees of freedom scattering Hamiltonian 
systems, the dynamics can be understood through the peri-
odic orbits of the system, which are the organizing centers 
of the dynamics, and their associated invariant structures 
in phase–space. It is beyond the scope of this presentation 
to summarize the theory of chaotic scattering. Suffice it to 
say that, first, phase–space is the natural object to analyze 
the dynamics and, second, despite of the dominant role 
of unbounded trajectories, strictly bounded trajectories 
may form a set of positive measure under certain stability 
conditions. The latter holds because periodic orbits ap-
pear generically through saddle–center bifurcations. That 
is, as a parameter of the system is varied (e.g., the Jacobi 
integral in the circular restricted three-body problem is 
reduced), two new periodic orbits appear, one is stable and 
the other unstable. The invariant manifolds of the unstable 
periodic orbit bound a region in phase–space around the 
stable periodic orbit, so trajectories close enough to the 
stable periodic orbit remain close to it for all future times. 
That is, test particles with initial conditions inside these 
phase–space regions will not escape to infinity along scat-
tering trajectories. Further reduction of the Jacobi integral 
sets in a period doubling bifurcation cascade, where the 
elliptic point becomes inverse hyperbolic; eventually, the 
horseshoe structure is locally hyperbolic, which implies 
that the set of trapped orbits (periodic and aperiodic) is of 
measure zero. These results are generic for autonomous 
two degrees of freedom scattering Hamiltonians (Benet 
and Seligman, 2000; Benet, 2001); for systems with more 
degrees of freedom there are theorems which establish the 
conditions to have some effective stability, i.e., trapped 
motion is proven for very long but finite times (Jorba and 
Villanueva, 1997a, 1997b).

In the intervals of the Jacobi integral where there is 
a stable periodic orbit, the manifolds of the unstable orbit 
define barriers which confine dynamically the motion of the 
ring particles. Such trapping actually takes place around 
the central planet due to the intrinsic rotation implicit in 
Equation (3). The trapped orbits thus remain close to the 
stable periodic orbit, not escaping irrespectively of whether 
the actual motion is periodic, quasi-periodic or even chaotic. 
As mentioned above, this holds generically for time-inde-
pendent two degrees of freedom scattering systems; for more 
degrees of freedom effective dynamical trapping has been 
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Figure 5. a) Example of a ring of non-interacting particles for the scattering billiard system on a circular orbit, in an inertial reference frame. The figure 
is obtained by projecting the phase space location of an ensemble of particles (inside the trapping region) onto the X-Y  space, at a given time. b) Detail 
of a region of the ring. The black lines are the analytical estimates based on the stability properties of the organizing periodic orbit.

observed (Merlo and Benet, 2007; Benet and Merlo, 2008). 
Generically here implies that these results only depend on 
the local properties of phase–space and not on the specific 
interaction. This makes the whole scattering approach robust 
in a strict mathematical sense, which physically allows to 
include other small conservative perturbations not included 
initially in Equation (1), as for instance the oblateness of 
the planet.

We focus on the whole interval of Jacobi integral 
where such dynamically trapped motion takes place. We 
consider an ensemble of independent ring particles, i.e., 
non-interacting test particles, with essentially arbitrary 
initial conditions at t = 0  that belong to the specific interval 
where trapped motion exists. The particles whose initial 
conditions lie outside the region of trapped motion (for the 
specific value of the Jacobi integral) will rapidly escape to 
infinity along a scattering trajectory. In contrast, those par-
ticles within the region of trapped motion stay dynamically 
confined to trajectories close to the central periodic orbit. 
The distinction among these two types of initial conditions 
is sharp. Therefore, letting the system evolve for some time, 
a ring is obtained by projecting into the X-Y  space at a given 
(fixed) time the phase–space location of all the ring particles 
of the ensemble that are dynamically confined. 

From these considerations some important structural 
properties of the ring follow. First, the ring displays sharp 
edges, since the distinction between trapped particles and 
escaping particles is clear after rather short times. Second, 
the rings are in general eccentric since the motion of each 
particle of the ring is close to the organizing periodic orbit, 
which typically displays some eccentricity in a rotating 
frame. Third, the narrowness of the ring can be understood 
from the fact that the region in phase–space corresponding 
to dynamically bounded motion is typically very small 
(Benet et al., 1998), as well as the interval of values of the 

parameter where the reference periodic orbit is stable (Benet 
and Merlo 2004). 

We emphasize that, despite the qualitative nature of 
these results, these structural properties are observed in 
real narrow planetary rings, and some of them are not fully 
understood (Esposito, 2002; Sicardy, 2005).

STRUCTURE IN NARROW RINGS USING THE 
SCATTERING APPROACH

In this section we review some results on the struc-
ture of the rings obtained using the scattering approach on 
a specific toy model. Our toy model is a planar scattering 
billiard on a Kepler orbit, an impenetrable disk rotating 
around a given point on a circular or elliptic Kepler orbit. 
A thorough description of the model can be found in Merlo 
and Benet (2007). This model is unrealistic; yet, it is the 
most simple realization of Equation (3), it can be studied to 
some extent analytically and, most important, the qualitative 
results obtained display consistently most –if not all– the 
structural properties observed in the narrow planetary rings. 
The rings we obtain are narrow, non-circular, sharp-edged, 
may display several components which are braided, and may 
also display non-continuous rings formed by a number of 
arcs. It is encouraging to note that such an unrealistic system, 
which only emphasizes the importance of considering scat-
tering dynamics, can display such qualitative resemblance 
to the structures observed in real planetary rings. Similar 
results have been obtained in other systems, including the 
circular restricted three body problem (Merlo and Benet, 
2007) and in a consistent implementation using five bodies 
(Olmedo, 2007) .

We begin with the scattering billiard moving on a 
circular orbit. In a frame rotating with the disk the new 
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Figure 6. Detail of the ring when the disk moves on an eccentric Kepler orbit with eccentricity a) ε = 0.0001  and (b) ε = 0.00167. Note the change in the 
scales among the frames and with respect to Figure 1b.

Hamiltonian becomes time independent and is therefore 
a conserved quantity, the Jacobi integral. In Figure 5a we 
plot a ring (grey region) obtained in this case; the shaded 
region is the hard disk; Figure 5b shows an enlargement of 
a region of the ring. In these figures the continuous black 
lines are analytical estimates given by the stability properties 
of the central stable periodic orbit (Benet and Merlo, 2004); 
as shown, they give excellent estimates of the boundaries 
of the ring. The ring is narrow, eccentric and does display 
sharp edges. In an inertial frame, the ring rotates around the 
origin maintaining its shape; this is due to the circular sym-
metry of the problem. Note that in this system the motion of 
each ring particle is strictly rectilinear between consecutive 
encounters with the disk, where it is specularly reflected in 
a local reference frame (Meyer et al., 1995). No encounters 
with the disk lead to escape of the particle. 

When the keplerian orbit of the disk has eccentric-
ity ε ≠ 0, the time dependence of the problem cannot be 

removed except by extending the effective number of 
degrees of freedom in the usual way; then, the system has 
more than two degrees of freedom. Figure 6a shows an 
enlargement of a region of the ring obtained when the disk 
moves on a keplerian ellipse with eccentricity ε = 0.0001; 
Figure 6b shows a detail of the ring corresponding to ε = 
0.00167. First, we observe that the rings are narrower than 
the obtained one when the disk moves on a circular orbit. 
However, the most striking feature of the rings displayed is 
the fact that they are actually divided in two or more distinct 
components, known as strands. These strands are entangled 
along the azimuthal angle (measured from the contact point 
with the disk), forming a braided structure. The motion of 
the ring particles is such that, a ring particle whose initial 
conditions belong to a certain ring component stays in that 
component afterwards. In terms of the phase–space, this 
implies that each component belongs to an independent 
phase–space region; this interpretation will be confirmed 
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The dynamics of such multiple-component rings is 
rich and interesting. In Figures 7 we present the whole 
ring at distinct times measured as a fraction of the period 
of the disk, Td = 2p , for ε = 0.00167. In these figures, 
the horizontal axis represents the polar angle measured 
anti-clockwise from the point in contact with the disk; 
the vertical axis corresponds to the radial displacement 
with respect to the average radial distance. First, we note 
in Figures 7 the clear azimuthal dependence on the radial 
displacement. Moreover, the figures show that each ring 
component, which maintains its individuality, undergoes 
changes in their structure independently of the others. 
The azimuthal dependence manifested in Figures 7 is a 
consequence of the broken symmetry which a non-zero 
eccentricity induces.

Figure 6 also manifests a subtle dependence upon 
the value of ε. This is further illustrated in Figure 8, where 
we plot the corresponding enlargement of a region of the 
ring obtained for  ε = 0.00168. Comparing this figure with 
Figure 6b, we observe that one of the ring components, the 
innermost in Figure 8, has completely disappeared and a 
non-continuous ring has appeared. Such “patches” or arcs, 
are actually found everywhere in the ring. Their structure 
obviously recall us some clumpy behavior observed in 
some narrow rings in Saturn and the famous Adam’s arcs 
in Neptune. The fact that for ε = 0.00167 we had three 
components and now there are only two and the arcs, can 
misleadingly be interpreted as a bifurcation which breaks 
one ring component in many arcs. Yet, a thorough search 
was carried out and our results indicate, as it was shown 
already in Figure 6b by the dark spots, that these arcs are 
indeed observed for values of  ε where the third component 
is still present. These arcs appear from a ring componet; 
small changes on ε preserves them. This therefore rules out 
the idea that arcs follow from a bifurcation that destroys 
individual ring components. We finally observe that also in 
the ring of Figure 8 there are arcs immersed in the outermost 
ring component.

The above results indicate that, using the scattering 
approach, we indeed obtain rings which are narrow, non-
circular, and have sharp edges. These properties follow 
naturally from the phase–space structures considered within 
the scattering approach, i.e., the properties of the regions of 
trapped motion that appear literally as islands in the infinite 
ocean of escaping trajectories. In addition, these rings may 
display properties which show an azimuthal dependence: 
They may display multiple components which are entangled 
and form braids, and/or a number of localized arcs. The 
dynamical behavior becomes richer with new time scales 
which are much shorter than the period of the rotating poten-
tial. These structural properties are observed in distinct real 
narrow planetary rings. While all the results presented above 
have been illustrated using a toy model, a simple billiard 
system rotating on a Kepler orbit, the scattering approach 
is robust, and it can be applied to more realistic situations 
(Merlo and Benet, 2007; Olmedo, 2007).

latter. It is worth mentioning here that Saturn’s F ring is 
precisely an example of ring with multiple components 
which, in addition, does not fulfill the requirements of the 
sheperding theory (Esposito, 2002).

Figure 7. Whole ring represented using polar coordinates (see text), when 
the disk moves on an eccentric Kepler orbit with ε = 0.00167. Each frame 
represents different times t expressed as fractions of the orbital period, 
Td = 2�. (a) t = Td/10; (b) t = 3Td/10 ; (c) t = Td/2 . Note how the different 
ring components entangle, forming a braided structure.
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Figure 9. Poincaré surface of section displaying the structure of phase space for the scattering billiard on a circular orbit (two degree of freedom). (a) 
Typical structure found after the saddle–center bifurcation. The black and red curves are the manifolds of the unstable periodic orbit; they bound a region, 
which contains the stable periodic orbit, where trajectories cannot escape to infinity. (b) Phase-space structure when both periodic orbits are unstable. 
While there are orbits that never escape, the probability of finding them is zero.

PHASE–SPACE CONSIDERATIONS

In this section we shall describe the phase–space 
structures upon which the scattering approach is based. 
We shall characterize the underlying changes that can take 
place when the Hamiltonian has more than two degrees of 
freedom, which are thus responsible for the appearance of 
multiple components and arcs. 

We begin with the phase–space of a two degree of 
freedom Hamiltonian scattering system, with and without 

a region of trapped motion. As mentioned above, a generic 
scenario for the appearance of periodic orbits in Hamiltonian 
systems is the so called saddle–center bifurcation. Generic 
here implies that the same scenario holds for a large variety 
of interactions; the relevant aspects are the local properties. 
The saddle–center bifurcation occurs when, by varying a 
parameter of the system, two new periodic orbits are created, 
one of them is stable and the other unstable. In simple terms, 
it occurs when the solution of a quadratic equation changes 
from having complex roots to real-valued solutions. Just 
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Figure 8. Detail of the ring when the disk moves on an eccentric Kepler orbit with eccentricity ε = 0.00168 . The innermost ring component of Figure 2b 
has disappeared, and a discontinuous ring formed by patches or arcs is now apparent. Note that the outermost component also displays the occurrence 
of other set of arcs.
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after the bifurcation, the stable and unstable manifolds of 
the unstable periodic orbit bound a region around the stable 
periodic orbit (Figure 9a). Out of this region unstable motion 
dominates and, if the unstable fixed point is the outermost 
in phase–space, the corresponding (scattering) trajectories 
escape to infinity. On the contrary, trajectories whose initial 
conditions lie inside cannot escape from a vicinity of the 
stable fixed point and are therefore dynamically trapped. 
By further varying the parameter, the central stable periodic 
orbit typically becomes unstable through a period-doubling 
cascade. The phase–space changes topologically (Figure 
9b), and may become eventually completely hyperbolic. 
For two degrees of freedom Hamiltonian systems this can 
be quantitatively characterized by computing the trace of 
the matrix that describes the linearized dynamics around 
a periodic orbit. When the absolute value of the trace is 
less than 2, the periodic orbit is stable and a region of 
bounded motion exists; otherwise, both periodic solutions 
are unstable. These elementary facts were used to construct 
the analytical estimates displayed in Figure 5 (see Benet 
and Merlo, 2004).

For more than two degrees of freedom, the topologi-
cal constrains that imply that the manifolds of the unstable 
orbit define a bounded region around the stable one cease 
to apply. Arnold diffusion follows from this. This is par-
ticularly important since the explicit time dependence in 
Equation (3) yields an effective phase–space of five dimen-
sions. Yet, there are theorems that provide conditions for 
the existence of effective bounded motion around stable 
tori (Jorba and Villanueva, 1997a,b). In order to obtain a 
graphical representation of the changes in phase–space, we 
shall describe the parametric behavior of a relative measure 
of the phase–space volume which is occupied by trapped 
trajectories. This, as we shall show, allows us to understand 
the appearance of structure in the rings. 

In order to understand the appearance of the strands 
or arcs we need a way of characterizing the phase–space 
regions of trapped motion in a global way. A convenient 
form of achieving this, in particular when the number of 
degrees of freedom is more than two, is to consider the 
relative phase–space volume occupied by the regions of 
trapped motion (in the sense of effective stability) in terms 
of a parameter. For the scattering billiard in a circular orbit 
this quantity can be parameterized in terms of the Jacobi 
integral. Yet, the Jacobi integral is not conserved for non-
zero eccentricity. We have therefore opted to use the average 
time between consecutive collisions with the disk, 〈Δt〉. Note 
that this quantity is equivalent to the average first-return 
time to a Poincaré section, which may be used in a more 
general context. In Figure 10 we present the structure of 
the relative phase–space volume for (a) ε = 0 and (b) ε = 
0.0001; the corresponding rings are illustrated in Figures 5 
and 6a, respectively.

In Figure 10a we observe at certain specific values of 
〈Δt〉 that the phase–space volume of the region of trapped 
motion is reduced drastically. It can be shown that the 

location where such abrupt reduction takes place is given 
by a resonant condition on the stability exponents, i.e., in 
the (complex) phase of the eigenvalues of the linearized 
dynamics, and are not related to the occurrence of rational 
ratios among any relevant orbital periods (Benet and Merlo, 
2008; Benet and Merlo, 2009); the structure of Figure 
10a for two degrees of freedom Hamiltonians is universal 
(Contopoulos et al., 1999; Contopoulos et al., 2005). The 
structure of the histogram uncovers important aspects of 
the dynamics; in particular, the fine scale “jumps” mark the 
destruction of certain invariant curves as the parameter is 
changed (Simó and Vieiro, 2009). These invariant curves, 
if they exist bound the motion of some outlying chaotic 
regions; otherwise such trajectories escape along scattering 
trajectories. This occurs also around any secondary satellite 
islands, which accounts for the self-similar structure (see 
Simó and Vieiro, 2009).

In Figure 10b, which corresponds to ε = 0.0001, we 
observe in general some qualitative resemblance with the 
case ε = 0 (Figure 10a). However, instead of a localized 
drastic reduction of the phase–space volume of the trapped 
region as displayed in Figure 10a, in the present case a true 
gap is observed in the histogram. The gap appears around 
certain stability resonances once the eccentricity ε is non-
vanishing, and is due to nonlinear effects (Benet and Merlo, 
2008). Exciting such stability resonance divides the regions 
of trapped motion in two disjoint regions. These gaps are 
actually responsible for the appearance of multiple strands: 
If the gap is wide enough, the regions of trapped motion 
are, in a sense, distant in phase–space, and their projec-
tion onto the X-Y plane yields a ring with two independent 
strands. Then, the appearance of multiple-component ring 
follows from higher-dimensional and nonlinear effects. For 
a thorough description of the dependence of the histograms 
on 〈Δt〉 upon ε see Benet and Merlo (2009).

The last point we shall address here is related to 
the appearance of arcs. Intuitively, we expect that arcs 
are the result of projecting phase–space regions which 
resemble chains of bubbles. To understand their appear-
ance we must mention that, e.g., for ε = 0.00167, there are 
exactly 149 arcs along the whole ring. Furthermore, the 
exact configuration of the arcs in the X-Y  space (labeled 
in an arbitrary way) is repeated after 229 bounces with the 
disk. These observations suggest that the appearance of 
arcs is linked with the mean motion resonance 149:229. 
Recent results confirm this, which has also served to 
find other occurrences of arcs (Benet and Merlo, 2009). 
Such resonances introduce a strong azimuthal dependence 
on certain trapping regions in phase–space; this seems to 
create, in such a higher dimensional phase–space, chains 
of isolated islands where trapping takes place, which seems 
to be an extension of the Poincaré-Birkhoff theorem for 
two degrees of freedom systems. We shall finally note that 
Adam's arcs in Neptune are understood through the occur-
rence of eccentricity and inclination resonances (Namouni 
and Porco, 2002).
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CONCLUSIONS AND OUTLOOK

In this paper we have reviewed some of the open 
problems related to the stability and structure of planetary 
narrow rings, and described a general and self-consistent 
approach to understand these issues, the scattering approach. 
Our approach is based on the local structure of phase–space 
around stable (periodic or quasi-periodic) solutions in 
regions where scattering dominates the dynamics. The 
corresponding structure in phase–space allows for a set of 
positive measure to exhibit dynamically trapped motion, 
i.e. a non-zero probability to find a structure resembling 
a ring. The basic idea is, simply, what we see is what is 
dynamically trapped and the structure is precisely uncovered 
by what it has escaped, i.e., it is created by the confining 

mechanism.
We have illustrated our approach using an unrealistic 

toy model. Our results, which have only a qualitative 
value, show the occurrence of narrow non-circular rings, 
with sharp edges, which may display multiple components 
and arcs. The interest should not be the example used, but 
the fact that the scattering approach is robust. The results 
obtained in such an unrealistic system are encouraging, 
precisely because of the qualitative agreement with the 
observations. The structure that appears is understood 
in terms of the local properties of phase–space which is 
dominated by scattering trajectories. This approach can be 
taken over using more realistic Hamiltonian models which 
certainly include gravitational interactions. We are working 
along these lines.

Figure 10. Histograms of the average time between consecutive collisions with the disk for an ensemble of ring particles for the scattering billiard on a 
Kepler orbit with (a) ε = 0 and, (b) ε = 0.0001. The histograms give a measure of the phase−space volume occupied by trapped trajectories. The main 
gaps are related to the stability resonances, indicated as vertical dash−dotted lines. For non−zero ε, the stability resonances separate the regions of trapped 
motion. This yields multiple ring components.
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