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ABSTRACT

The Asmari Formation deposited in the Zagros foreland basin during the Oligocene-Miocene. 
Four different measured sections were studied in this area in order to interpret the facies, depositional 
environment and sequence stratigraphy of the Asmari Formation. In this study, thirteen different 
microfacies types have been recognized, which can be grouped into six depositional environments: 
tidal flat, restricted lagoon, open lagoon, shoal, slope and basin. The Asmari Formation represents 
sedimentation on a carbonate ramp. Four third-order sequences are identified, on the basis of deepening 
and shallowing patterns in the microfacies and the distribution of the Oligocene-Miocene foraminifers. 
The depositional sequences 1, 2 and 3 were observed in Dehluran and Kabirkuh-Darrehshahr areas, 
and are synchronous with a period of either erosion or non-deposition represented by unconformities in 
Mamulan and Sepid Dasht areas.
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RESUMEN

La Formación Asmari se depositó en el antepaís de la cuenca Zagros durante el Oligoceno-Mioceno. 
Se estudiaron y midieron cuatro secciones diferentes en esta área para interpretar las facies, ambiente 
de depósito y la secuencia estratigráfica de la Formación Asmari. En este estudio, trece tipos diferentes 
de microfacies han sido reconocidos, los cuales pueden ser agrupados en seis ambientes de depósito: 
planicie de marea, laguna restringida, laguna abierta, mar somero (bancos de arena), pendiente marina 
y cuenca. La Formación Asmari representa sedimentación en una rampa carbonatada. Cuatro secuencias 
de tercer orden se identificaron, según patrones de profundidad y superficialidad de las microfacies y la 
distribución de los foraminíferos del Oligoceno-Mioceno. Las secuencias de depósito 1, 2 y 3 se observaron 
en las áreas de Dehluran y Kabirkuh-Darrehshahr, y son sincrónicas con un período de erosión o bien 
de no depósito, representado por discordancias en las áreas de Mamulan y Sepid Dasht.
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in the study area mainly based on the distribution of the 
foraminifera. 

GEOLOGICAL SETTING

Based on the sedimentary sequence, magmatism, 
metamorphism, structural setting and intensity of defor-
mation, the Iranian Plateau has been subdivided into eight 
continental fragments, including Zagros, Sanandaj-Syrjan, 
Urumieh-Dokhtar, Central Iran, Alborz, Kopeh-Dagh, Lut, 
and Makran (Heydari et al, 2003; Figure 2). The study area 
is located in the northwestern part of the Zagros basin and in-
clude four sections: 1) Dehluran, 2) Kabirkuh-Darrehshahr, 
3) Mamulam and 4) Sepid Dasht (Figure 1). 

The Zagros basin is composed of a thick sedimentary 
sequence that covers the Precambrian basement formed 
during the Pan-African orogeny (Al-Husseini, 2000). 
The total thickness of the sedimentary column depos-
ited above the Neoproterozoic Hormuz salt before the 
Neogene Zagros folding can reach over 8 to 10 km (Alavi, 
2004; Sherkati and Letouzey, 2004). The Zagros basin has 
evolved through a number of different tectonic settings 
since the end of Precambrian. The basin was part of the 
stable Gondwana supercontinent in the Paleozoic, a passive 
margin in the Mesozoic, and became a convergent orogen 
in the Cenozoic.

During the Palaeozoic, Iran, Turkey and the Arabian 
plate (which now has the Zagros belt situated along its 
northeastern border) together with Afghanistan and India, 
made up the long, very wide and stable passive margin of 
Gondwana, which borderered the Paleo-Tethys Ocean to 
the north (Berberian and King, 1981).

By the Late Triassic, the Neo-Tethys ocean had opened 
up between Arabia (which included the present Zagros re-
gion as its northeastern margin) and Iran, with two different 
sedimentary basins on both sides of the ocean (Berberian 
and King, 1981).

The closure of the Neo-Tethys basin, mostly during 

Introduction

This paper deals with the Asmari Formation, an 
Oligocene-Miocene carbonate succession in the northwest-
ern Zagros basin, southwest Iran (Figure 1). The area is 
excellent to establish the geometrical relationship between 
sedimentary facies and sequence stratigraphy of a carbon-
ate platform. 

The Asmari Formation, a thick carbonate sequence of 
the Oligocene-Miocene, is one of the best known carbonate 
reservoirs in the world. It is present in most of the Zagros 
basin. Lithologically, the Asmari Formation consists of 
limestone, dolomitic limestone, dolomite and marly lime-
stone. Some anhydrite (Kalhur Member) and lithic and limy 
sandstones (Ahwaz Member) also occur within the Asmari 
Formation (Motiei, 1993).

The Asmari Formation was originally defined in pri-
mary works by Busk and Mayo (1918), Richardson (1924), 
Van Boeck et al. (1929), and Thomas (1948). Later, James 
and Wynd (1965), Wynd (1965), Adams and Bourgeois 
(1967), Kalantary (1986), and Jalali (1987) introduced 
the microfaunal characteristics and assemblage zones for 
the Asmari Formation. More recent studies of the Asmari 
Formation have been conducted on biostratigraphic criteria 
(Seyrafian et al., 1996; Seyrafian and Mojikhalifeh, 2005; 
Hakimzadeh and Seyrafian, 2008; Laursen et al., 2009), 
microfacies and depositional environments (Seyrafian 
and Hamedani, 1998, 2003; Seyrafian, 2000) and depo-
sitional environment and sequence stratigraphy (Vaziri-
Moghaddam et al., 2006; Amirshahkarami et al., 2007a, 
2007b; Ehrenberg et al., 2007).

This paper reports on a sedimentological study of 
Asmari Fm. outcrops, whose results could contribute to a 
better understanding of the subsurface Asmari Formation in 
adjacent oilfield areas. The main objectives of this reseach 
were foused on (1) a description of the facies and their 
distribution on the Oligocene-Miocene carbonate platform, 
(2) the palaeoenvironmental reconstruction of the carbonate 
platform, and (3) the origin of sequences that developed 

Figure 1. Map showing the location of the study areas in northwest Zagros. Dehluran (Section 1), Kabirkuh-Darrehshahr (Section 2), Mamulan (Section 
3) and Sepid Dasht (Section 4).
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basin axis (Motiei, 1993). During the Oligocene-Miocene 
this basin was gradually narrowed and the Asmari Formation 
was deposited. Different facies, including lithic sandstone 
(Ahwaz Member) and evaporites (Kalhur Member) were 
deposited during late Oligocene-early Miocene times 
(Ahmadhadi et al., 2007). In the southwestern part of the 
Zagros basin, the Asmari Formation overlies the Pabdeh 
Formation, whereas in the Fars and Lurestan regions it 
covers the Jahrum and Shahbazan formations (Figure 3). 
Although the lower part of the Asmari Formation interfin-
gers with the Pabdeh Formation in the Dezful Embayment 
(Motiei, 1993), its upper part covers the entire Zagros basin. 
The maximum thickness of the Asmari Formation is found 
in the northeastern corner of the Dezful Embayment. 

Methods and study area

Four sections of the Asmari Formation were measured 
bed by bed, and sampled in four areas (Dehluran, 180; 
Kabirkuh-Darrehshahr, 260; Mamulan, 69/5; and Sepid 
Dasht, 82/5 m thick; Figures 1 and 4), and sedimentologi-
cally investigated. The sections were described in the field, 
including their weathering profiles, facies and bedding 
surfaces. Fossils and facies characteristics were described 
in thin sections from 408 samples. Test shapes of the largest 
benthic foraminifera were taken into account for the facies 
interpretation, as their differences depend on the environ-
ment (Hottinger, 1980, 1983; Reiss and Hottinger,1984; 
Leutenegger, 1984; Hohenegger, 1996; Hallock, 1999; 
Hohenegger et al., 1999; Geel, 2000; Brandano and Corda, 
2002; Corda and Brandano, 2003; Barattolo et al., 2007). 
The lithology and the microfacies types were described 
according to the schemes porposed by Dunham (1962) and 
Embry and Klovan (1971). Also, the same 408 samples were 
used for sequence stratigraphy analyses. 

BIOSTRATIGRAPHY

Biozonation and age determinations are based on 
strontium isotope stratigraphy recently established for the 
Asmari Formation by Laursen et al. (2009). Results from 
the foraminifera data are summarized in Table 1. 

Three assemblages of foraminifera were recognized 
in the studied areas and were discussed in ascending strati-
graphic order as follows:

Assemblage 1. This assemblage occurs only at 
Kabirkuh-Darrehshahr area (Section 2). The most impor-
tant foraminifera are: Eulepidina sp., Eulepidina dilatata, 
Eulepidina elephantine, Lepidocyclina sp., Nephrolepidina 
sp., Operculina sp., Operculina complanata, Austrotrillina 
howchini, Austrotrillina asmaricus, Peneroplis sp., 
Triloculina trigonula, Spiroclypeus blanckenhorni, mili-
olids and globigerinids. This assemblage is correlated 
with Lepidocyclina-Operculina-Ditrupa assemblage zone 

the Late Cretaceous, was due to the convergence and north-
east subduction of the Arabian plate beneath the Iranian 
sub-plate (Berberian and King, 1981; Stoneley, 1981; 
Beydoun et al., 1992; Berberian, 1995). The closure led 
to the emplacement of pieces of the Neo-Tethyan oceanic 
lithosphere (i.e., ophiolites) onto the northeastern margin 
of the Afro-Arabian plate (e.g., Babaie et al., 2001; Babaei 
et al., 2005; Babaie et al., 2006).

Continent-continent collision starting in the Cenozoic 
has led to the formation of the Zagros fold-and-thrust belt, 
continued shortening of the mountain range, and creation of 
the Zagros foreland basin. The Late Cretaceous to Miocene 
rocks represent deposits of the foreland basin prior to the 
Zagros orogeny, and subsequent incorporation into the 
colliding rock sequences. This sequence unconformably 
overlies Jurassic to Upper Cretaceous rocks. 

Compressional folding began during or soon after the 
deposition of the Oligocene-Miocene Asmari Formation 
(Mapstone, 1978; Sepehr and Cosgrove, 2004).

During the Palaeocene and Eocene, the Pabdeh (pe-
lagic marls and argillaceous limestones) and the Jahrum 
(shallow marine carbonates) formations were, respectively, 
deposited in the middle part and on both sides of the Zagros 

Figure 2. Subdivisions of the Zagros orogenic belt (adopted from Heydari 
et al., 2003). 
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of Laursen et al. (2009) (Table 1) and is attributed to the 
Chattian time.

Assemblage 2. This assemblage is present in 
Dehluran (Section 1) and Kabirkuh-Darrehshahr (sec-
tion 2) areas. The most diagnostic species in both stud-
ied sections include: Miogypsina sp., Elphidium sp. 14, 
Lepidocyclina sp., Operculina complanata, Austrotrillina 
sp., Austrotrillina asmaricus, Peneroplis sp., Peneroplis 
thomasi , Triloculina trigonula, Miogypsinoides sp., Borelis 
sp., Meandropsina iranica, Meandropsina anahensis, 
Dendritina rangi, Amphistegina sp., miliolids, Discorbis 
sp., Valvulinid sp. and Neorotalia viennoti. This assem-
blage corresponds to the Miogypsina–Elphidium sp. 14- 
Peneroplis farsensis assemblage zone of Laursen et al. 
(2009) (Table 1). The assemblage is considered to be 
Aquitanian in age. 

Assemblage 3. This assemblage is recordable in 
all studied sections and consists of Borelis melo curdica, 
Borelis sp., Peneroplis sp., Neorotalia sp., Elphidium sp., 
Meandropsina iranica, Dendritina rangi, Dendritina sp., 
miliolids, Discorbis sp. and globigerinids. The assemblage 
represents the Borelis melo curdica-Borelis melo melo as-
semblage zone of Burdigalian age (Laursen et al., 2009).

MICROFACIES ANALYSIS

Facies analysis of the Asmari Formation in the study 
areas resulted in the definition of thirteen facies types 
(Figure 5), which characterize platform development. Each 
of the microfacies exhibits typical skeletal and non-skeletal 

components and textures. The general environmental inter-
pretations of the microfacies are discussed in the following 
paragraphs.

Microfacies A. Stromatolitic boundstone (Figure 5.1)

This microfacies, with finely or moderately crinkled 
horizontal lamination, consists of alternating calcilutitic 
laminae and calcisiltic bioclastic laminae. Microfacies A is 
only present at Dehluran area (Section 1) and intercalates 
with mudstone facies.

Interpretation. This facies type is common in tidal 
flat sediments (Flügel, 2004; Hardie, 1986; Steinhauff and 
Walker, 1996; Lasemi, 1995; Hernández-Romano, 1999; 
Aguilera-Franco and Hernández-Romano, 2004). Today, 
flat laminated structures of microbial origin are found in 
intertidal settings. In regions with an arid climate (e.g., 
Persian Gulf or Shark Bay) stromatolites with smooth mats 
are located in the lower intertidal zone (Davies, 1970a, 
1970b; Kinsman and Park, 1976; Hoffman, 1976).

Microfacies B. Fenestrate mudstone (Figure 5.2)

This facies consists of fine grained microcrystalline 
limestone. Bioclasts are lacking and the fenestrate struc-
tures are well developed. Microfacies B was identified at 
Kabirkuh-Darrehshahr area (Section 2) and mostly occurs 
with quartz mudstone.

Interpretation. Fenestrate structures are typical prod-

Figure 3. Schematic section showing the stratigraphic position of the Asmari Formation within the Cenozoic rocks of southwestern Iran (Motiei, 2001).
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ucts of shrinkage and expansion, gas bubbles, and air escape 
during flooding, or may even result from burrowing activity 
of worms or insects. Shinn (1983) considered similar facies 
representative of a tidal flat environment, where trapped air 
between irregularly-shaped deposits leads to the develop-
ment of birdseyes.

Microfacies C. Mudstone (Figures 5.3 and 5.4)

This microfacies is composed of dense lime mud-
stones. Sediments also contain sparse unidentified fauna. In 
some samples, subordinate amounts of detrital quartz grains 
and gypsum are also present. This facies occurs in middle 

Figure 4. Outcrop photographs of three of the studied sections. Stratigraphic sections related to these outcrops are shown in Figure 13. a: Dehluran sec-
tion (Pabdeh, Asmari and Gachsaran formations). b: Dehluran section (Pabdeh Formation, lower and upper Kalhur Member and Asmari Formation). c: 
Kabirkuh-Darreshahr section (Pabdeh, Asmari and Gachsaran formations). d: Mamulan section (Shahbazan, Asmari and Gachsaran formations). 
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and upper parts of the Asmari Formation. Microfacies C 
occurs at Dehluran (Section 1), Kabirkuh-Darrehshahr 
(Section 2) and Mamulan (Section 3) areas. It is either next 
to anhydrite or intercalates with lagoonal facies.

Interpretation. Lime mudstone, with gypsum blades 
and small quartz grains and no evidence of subaerial expo-
sure, was deposited in a restricted shelf lagoon. This facies 
indicates hypersaline conditions within a shelf lagoon.

Microfacies D. Anhydrite (Figure 5.5)

Anhydrite facies have been observed in the upper part 
of the Pabdeh Formation and in the lower part of the Asmari 
Formation. The first anhydrite deposit is surrounded by 
marly limestones containing pelagic fauna. There is a sharp 
contact with the carbonates above and below. The second 
anhydrite deposit is intercalated between shallow water 
carbonates. Microfacies D is only present at Dehluran area 
(Section 1) and mostly associates with mudstone facies. 

Interpretation. Considering the thickness of the anhy-
drite deposits, their vertical stacking and lateral continuity, 
it is assumed that they are submarine deposits formed in an 
isolated saline basin. The deposition of anhydrite implicates 
that the depositional environment became isolated from the 
open ocean at that time, which allowed for the concentration 
and submarine precipitation of salt. An eustatic sea level 
drop is invoked as the most likely cause. This event took 
place around the Oligocene-Miocene boundary. Ehrenberg 
et al. (2007) noted that strontium dates obtained from an-
hydrite in the Asmari Formation were close to the expected 
depositional ages and suggested that the anhydrite formed 
as an evaporate rather than as a later diagenetic product.

Microfacies E. Dendritina miliolids peloids 
wackestone-packstone-grainstone (Figure 5.6)

Identifiable components of this facies include benthic 
imperforate foraminifera (Dendritina and miliolids) and 
peloids. Borelis, bivalves and gastropods (whole shell and 
broken fragments) are less common. The grains are poorly 
to medium sorted, are fine-to medium size and vary from 
sub-angular to semi-rounded. Textures are dominantly pack-
stone, but range from wackestone to grainstone. In some 
samples, the predominant non-skeletal carbonate grains 
are intraclasts. Microfacies E is present in all sections and 
mostly intercalates with open lagoonal facies. 

Interpretation. This facies was deposited in a restricted 
shelf lagoon. The restricted condition is suggested by the 
rare to absent normal marine biota and abundant skeletal 
components of restricted biota (imperforate foraminifera 
such as miliolids and Dendritina). The subtidal origin is 
supported by the lack of subaerial exposure and stratigraphic 
position. This microfacies represents the shallowest upper 
part of the photic zone, with very light, highly translucent 

Biozones 
(Laursen et al., 2009)

Age/Epoch Sec. 1 Sec. 2 Sec. 3 Sec. 4

Borelis melo curdica-
Borelis melo melo Ass. 
Zone

Burdigalian ● ● ● ●

Miogypsina- Elphidium sp. 
14 - Peneroplis farsensis 
Ass. Zone

Aquitanian ● ●

Lepidocyclina- 
Operculina- Ditrupa Ass. 
Zone

Chattian ●

and soft muddy substrate (Geel, 2000; Romero et al., 2002; 
Corda and Brandano, 2003; Vaziri-Moghaddam et al., 2006; 
Bassi et al., 2007).

Microfacies F. Bioclastic rotaliids miliolids bioclast 
wackestone-packstone (Figure 5.7)

Skeletal grains consist of diverse fauna, includ-
ing benthic foraminifera (miliolids, rotaliids), echinoid, 
corallinacean and bivalve fragments. Texture varies from 
wackestone to packstone. Microfacies F was identified at 
Dehluran (Section 1), Kabirkuh-Darrehshahr (Section 2) 
and Mamulan (Section 3) areas.

Interpretation. The co-occurrence of normal marine 
biota such as rotaliids, corallinaceans and echinoids with 
lagoonal biota such as miliolids, indicates that sedimentation 
took place in an open shelf lagoon. A similar facies with 
imperforate foraminifers and perforate foraminifers was 
reported from the inner ramp of the Oligocene-Miocene 
sediments of the Zagros basin (Vaziri-Moghaddam et al., 
2006).

Microfacies G. Bioclastic miliolids coral floatstone-
rudstone (Figure 5.8)

This facies is predominantly composed of miliolids 
and corallite fragments or fragments of coral colonies. 
Additional components are echinoderm fragments, recrys-
tallized bivalve fragments and small benthic foraminifers 
(Austratrillina and Dendritina). Grains are poorly sorted and 
are medium to coarse sand to granule in size. Microfacies 
G is present at Kabirkuh-Darrehshahr (Section 2) and 
Mamulan (Section 3) areas.

Interpretation. Co-occurrence of normal marine 
(perforate foraminifera and corals) and platform-interior 
(imperforate foraminifera) components in facies F and G 
suggests the absence of an effective barrier. Restricted shelf 
organisms are effectively separated from the normal marine 
environment by barriers.

Table 1. Distribution of foraminiferal assemblages in the Asmari Formation 
(refer to Figure 1 for locations).
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and within the storm wave base. Open marine, well-oxygen-
ated conditions are indicated by the diverse fauna. A similar 
microfacies was reported by Wilson (1975), Longman 
(1981), Flügel (1982), Riding et al. (1991), and Melim and 
Scholle (1995).

Microfacies J. Bioclastic Miogypsina corallinacean 
wackestone-packstone (Figures 5.12 and 5.13)

A diverse assemblage of poorly to moderately sorted, 
fragmented and whole fossils in lime mud is characteristic 
of this microfacies. Miogypsina and corallinacean fragments 
are the dominant bioclasts. Less common bioclasts include 
bryozoan and fragments of recrystallized bivalves and echi-
noderm. In a few samples with increasing nummulitids, the 
name of this microfacies changes to bioclast nummulitids 
corallinacean wackestone-packstone. Microfacies J was 
identified at Dehluran (Section 1), Kabirkuh-Darrehshahr 
(Section 2) and Sepid Dasht (Section 4) areas and interca-
lates with open marine facies.

Interpretation. The presence of high diverse steno-
haline fauna such as red algae, bryozoan, echinoid and 
larger foraminifera (Miogypsina and nummulitids) indi-
cate that the sedimentary environment was situated in the 
oligophotic zone in a shallow open marine environment or 
near a fair-water wave base on the proximal middle shelf 
(Pomar, 2001a, 2001b; Brandano and Corda, 2002; Corda 
and Brandano, 2003; Cosovic et al., 2004). In open marine, 
shallow waters, foraminifera produce robust, ovate tests 
with thick walls, as a protection against photo inhibition of 
symbiotic algae inside the test in bright sunlight, and/or as 
a protection against test damage in turbulent water.

Microfacies H. Bioclastic ooids packstone-grainstone 
(Figure 5.9)

The predominant grain types are skeletal fragments 
and ooids. Biotic grain types include echinid and gastropods. 
Ooid nuclei consist of recrystallized bivalve fragments, mili-
olids and rotaliids, with oval, circular or elongate outlines. 
Grains are fine- to coarse-sand size and sorting is moderate. 
Microfacies H was only identified at Kabirkuh-Darrehshahr 
area (Section 2) and mostly intercalates with imperforated 
coral rudstone to bioclastic Miogypsina corallinacea pack-
stone facies.

Interpretation. The features of this facies indicate 
moderate to high energy shallow waters with much move-
ment and reworking of bioclasts and the production of ooids. 
Sediments are interpreted to have been deposited in sand 
shoal (Wilson, 1975; Flügel, 2004).

Microfacies I. Bioclastic corallinacean coral 
floatstone-rudstone (Figures 5.10 and 11)

The main characteristic of this microfacies is abundant 
fragments of corallinacean and corals. Echinoid and bryo-
zoan fragments are also present. The fragments are coarse 
sand to granule in size. Due to changes in the type of fauna 
in some samples, the name of this facies changes to bio-
clastic Miogypsina coral floatstone-rudstone. Microfacies 
I referred to Sepid Dasht (Section 4) and mostly interca-
lates with bioclastic Miogypsina foraminifera corallinacea 
wackestone-packstone.

Interpretation. This facies is interpreted as an open 
marine facies that formed seaward of the platform margin 

Figure 5. Microfacies types of the Asmari Formation. 1: Stromatolitic boundstone, microfacies A (Sample No. O37, Dehluran section). 2: Fenestrate 
mudstone, microfacies B (Sample No. M 122, Kabirkuh-Darreshahr section). 3: Mudstone, microfacies C (Sample No. M119, Kabirkuh-Darreshahr 
section). 4: Mudstone with gypsum, microfacies C (Sample No. O79, Dehluran section), G: gypsum. 5: Anhydrite, microfacies D (Sample No. O20, 
Dehluran section). 6: Dentritina miliolid peloid grainstone, microfacies E (Sample No. M73, Kabirkuh-Darreshahr section). M: miliolids, P: peloid, D: 
Dendritina and G: gastropod. 7: Rotaliids miliolids bioclast packstone, microfacies F (Sample No. O40, Dehluran section), R: rotaliids, M: miliolids, B: 
bivalve and E: echinoid. 8: Miliolids coral bioclast rudstone, microfacies G (Sample No. M82, Kabirkuh-Darreshahr section), C: coral, B: bivalve, M: 
miliolids, and CR: corallinacea. 
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Microfacies K. Bioclastic lepidocyclinids nummulitids 
wackestone-packstone (Figure 5.14)

The main components are bioclasts and large perfo-
rate foraminifera. Bioclasts include bivalve, corallinacean 
(including articulated and crustose fragments), echinoderm 
and bryozoan fragments. The foraminifera are character-
ized by a relatively diverse assemblage of nummulitids 
(Operculina, Hetorestegina and Spiroclypeus) and lepidocy-
clinids (Eulepidina and Nephrolepidina). This facies is most 
prominent in lower parts of the Asmari Formation. Grains 
are coarse sand to granule in size and are in a fine-grained 
carbonate matrix. Fragmentation of larger foraminifera is 
rare. In a few samples, Amphistegina are more or less equal 
to lepidocyclinids in abundance, therefore, the name of the 
microfacies changes to bioclast Amphistegina nummulitids 
wackestone-packstone. Microfacies K referred to Kabirkuh-
Darrehshahr (Section 2), Mamulan (Section 3) and Sepid 
Dasht (Section 4) areas.

Interpretation. The presence of large flat lepidocycli-
nids and nummulitids indicate that sedimentation took place 
in relatively deep water. Flatter test and thinner walls with 
increasing water depth reflect the decreased light levels at 
greater depths (Geel, 2000; Beavington and Racey, 2004; 
Nebelsick et al., 2005; Bassi et al., 2007; Barattolo et al., 
2007).

Microfacies L. Bioclastic planktonic foraminifera 
lepidocyclinids wackestone-packstone (Figure 5.15)

The most frequent skeletal components of this mi-
crofacies are test fragments of echinoids, bryozoan, coral-
linacean, larger benthic foraminifera (lepidocyclinids) and 

entire tests of planktonic foraminifers. Bioclasts are angular 
to rounded and size ranges from silt to granule. Bioclastic 
planktonic foraminifera nummulitids wackestone-packstone 
and bioclastic planktonic foraminifera Miogypsina wacke-
stone-packstone are similar to the microfacies described 
above in overall character, but differ from each other by 
their larger foraminifera. Microfacies L occurs at Kabirkuh-
Darrehshahr (Section 2) and Sepid Dasht (Section 4) areas 
and intercalates with bioclastic planktonic foraminifera 
wackestone facies.

Interpretation. In general, the observed higher faunal 
diversity and the associated benthic foraminifers (lepido-
cyclinids, nummulitids and Miogypsina) and planktonic 
foraminifers, as well as bioclasts, indicate an open marine 
environment. Poorly washed matrix and mud-supported 
textures suggest environments below wave-base influenced 
by bottom-currents (Geel, 2000; Vaziri-Moghaddam et al., 
2006; Amirshahkarami et al., 2007a).

Microfacies M. Bioclastic planktonic foraminifera 
wackestone (Figure 5.16)

In this microfacies, planktonic foraminifera are the 
dominant biotic components, but fine fragments of bryozoan 
and echinoid are also present. The planktonic foraminifers 
include non-keeled globorotalids and globigerinids. Some 
planktonic tests are filled with sparry cement. This facies 
occurs mostly in lower parts of the Asmari Formaton in 
most sections; however, it is recorded in the upper part of 
the formation at Sepid-Dasht area. Microfacies M is present 
at Dehluran (Section 1), Kabirkuh-Darrehshahr (Section 2) 
and Sepid Dasht (Section 4) areas.

Interpretation. The general lack of sedimentary struc-

Figure 5 (continued). 9: Bioclastic ooids packstone-grainstone, microfacies H (Sample No. M78, Kabirkuh-Darreshahr section), O: ooid and S: shell frag-
ment. 10: Corallinacean coral bioclast floatstone, microfacies I (Samples No. T26, Sepid-Dasht section), CR: corallinacea and C: coral. 11: Miogypsina 
coral bioclast floatstone-rudstone, microfacies I, (Sample No. T75, Sepid-Dasht section), M: Miogypsina, C: coral. 12: Miogypsina corallinacean bioclast 
packstone, microfacies J (Samples No. M61, Kabirkuh-Darreshahr section), M: Miogypsina, S: shell fragment, and CR: corallinacea. 13: Bioclast nummu-
litids corallinacean, Microfacies J, (Sample No. O10, Dehluran section), N: nummulitids and CR: corallinacea. 14: Lepidocyclinids nummulitids bioclast 
wackestone-packstone, microfacies K (Sample No. M48, Kabirkuh-Darreshahr section), L: lepidocyclinids, N: nummulitids 15: Planktonic foraminifera 
lepidocyclinids bioclast packstone, microfacies L (Sample No. M5, Kabirkuh-Darreshahr section), P: planktonic foraminifera and L: lepidocyclinids. 16: 
Bioclastic planktonic foraminifera wackestone, microfacies M (Sample No. O3, Dehluran section), P: planktonic foraminifera and E: echinoid.
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tures, the fine-grained character, and the presence of undis-
turbed whole fossils from planktonic foraminifera suggest 
that this facies was deposited in calm, deep, normal-salin-
ity water (Buxton and Pedley, 1989; Cosovic et al., 2004; 
Flügel, 2004).

SEDIMENTARY MODEL

The recognized microfacies have allowed the 
differentiation of several carbonate marine system 
environments including tidal flat, restricted lagoon, open 
lagoon, shoal, slope and basin. These six depositional 
environments of the Oligocene-Miocene in the study area 
are similar to those found in many modern carbonate 
depositional settings (Read, 1985; Jones and Desrochers, 
1992). Of these, the Persian Gulf is perhaps the best modern 
analogue for inference of ancient water depths, because it 
shares many similarities with the Zagros foreland basin 
during the Oligocene-Miocene. Therefore, sedimentological 
and paleontological studies show that a ramp type carbonate 
platform sedimentary model can be fully applied to these 
ancient carbonate deposits (Read, 1982; Tucker, 1985; 
Tucker and Wright, 1990). According to Burchette and 
Wright (1992), carbonate ramp environments are separated 
into inner ramp, middle ramp and outer ramp. Outer ramp 
facies are characterized by marl and marly limestone 
lithologies. Wackestones predominate with abundant 
planktonic foraminifera. The presence of mud-supported 
textures and the apparent absence of wave and current 
structures suggest a low energy environment below storm 
wave base (Burchette and Wright, 1992).

Larger perforate foraminifera are abundant biogenic 
components of the shallow water carbonate succession 
in the Asmari Formation. A proliferation of perforate 
foraminifera is indicative of normal marine conditions 
(Geel, 2000). The lack of abrasion of the foraminifera 
indicates autochthonous accumulations, thus wackestone-
packstone with lepidocyclinids and nummulitids were 
deposited under low energy conditions, below fair weather 
wave base (FWWB) and above storm wave base (SWB) 
in the middle ramp setting. The variation in the shape 
of the test reflects the differences in water depth. The 
sediments with perforate robust and ovate specimens reflect 
the presence of shallower water than those containing 
large and flat lepidocyclinids and nummulitids. Larger 
foraminifera are limited geographically to temperate to 
tropical/subtropical environments (Hohenegger et al., 2000; 
Langer and Hottinger, 2000).

The common association of symbiotic algae with 
perforate foraminifera implies that light is a main factor in 
determining the depth distribution (Hansen and Buchardet, 
1977; Hallock, 1979, 1981; Bignot, 1985; Hallock and 
Glenn, 1986).

Inner ramp deposits represent a wider spectrum of 
marginal marine deposits, indicating high-energy shoal, 

open lagoon and protected lagoon. In the restricted lagoon 
environment, the faunal diversity is low and the normal 
marine fauna are lacking, except for imperforate benthic 
foraminifera (miliolids, Dendritina, borelisids), which 
indicates quiet, sheltered conditions. A large number of por-
cellaneous imperforate foraminifera points to the presence 
of slightly hypersaline waters (Geel, 2000). Open lagoonal 
conditions are characterized by mixed open marine fauna 
(such as red algae, echinoids and perforate foraminifera) 
and protected environment fauna (such as miliolids). The 
shallow subtidal environment above the fair-weather wave 
base is characterized by the presence of a facies associa-
tion showing signs of long-term water agitation (packing, 
sorting, poor taphonomic preservation and ooids). Such 
high-energy deposits are typically associated with carbonate 
shoals on carbonate platforms (Figure 6).

During the Chattian, outer ramp facies (Pabdeh 
Formation) was predominant at the Dehluran area (Section 
1, Figure 7). Simultaneously, outer to middle ramp condi-
tions occurred at the Kabirkuh-Darrehshahr area (Section 
2). The Dehluran area was experiencing outer-middle ramp 
conditions during the Early Aquitanian. At the same time, 
sedimentation at the Kabirkuh-Drarrehshahr area took placed 
in the middle and inner ramp environments. These areas 
experienced inner ramp (mostly lagoon sub-environment) 
condition during the Late Aquitanian (Figure 7). Eastern 
parts of the study area (Mamulan and Sepid Dasht were 
sites of non-deposition or erosion during Chattian through 
Aquitanian. In Mamulan area (section 3), middle and inner 
ramp environments prevailed through Burdigalian, whereas 
middle and outer ramp conditions were predominant in Sepid 
Dasht area (section 4) during the Burdigalian (Figure 7).

SEQUENCE STRATIGRAPHY

The studied succession can be framed in a sequence 
stratigraphic context. As a guide, we used the principal se-
quence stratigraphic concepts developed by many workers 
(e.g., Sarg, 1988, Posamentier et al., 1988; Van Wagoner et 
al., 1988, 1990, Read and Hrbury, 1993; Emery and Myers, 
1996; Coe and Church, 2003; Catuneanu, 2006) to recognize 
TST (transgressive systems tract), mfs (maximum flood-
ing surface), HST (highstand systems tract) and sequence 
boundaries.

Based on the distribution of planktonic and benthonic 
foraminifera, and on the detailed sedimentological and strati-
graphical study, we defined four third-order sequences. 

Sequence 1

The depositional sequence 1 is present in sections 1 
(Dehluran, 17 m thick) and 2 (Kabirkuh-Darrehshahr, 60 
m thick) of the study area (Figures 8 and 9). The sediments 
of sequence 1 are Chattian in age. Sequence 1 includes 
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the upper part of the Pabdeh Formation at Dehluran area, 
whereas at Kabirkuh-Darrehshahr area it encompasses the 
upper part of the Pabdeh Formation and the lower part of the 
Asmari Formation. At Dehluran area, TST and HST could 
not be differentiated because the relatively uniform deep 
sub-tidal succession is composed of planktonic foramin-
ifera wackestone without distinct changes in microfacies. 
TST was clearly recognized at Kabirkuh-Darrehshahr area. 
Shale and marly limestone of the TST contain abundant 

planktonic foraminifera and document a deep-subtidal, low 
energy environment during the TST. The maximum flood-
ing surface (mfs) coincides with the boundary between the 
Pabdeh and Asmari formations. The highstand systems tract 
(HST) comprises the lower part of the Asmari Formation. 
The early HST was characterized by constant shallow open 
marine environmental conditions (wackestone-packstone 
with perforate foraminifera). The late HST shows a trend 
toward more protected sediments (wackestone-packstone 

Figure 6. Depositional model for the carbonate platform of the Asmari Formation at the northwest of Zagros basin. Interpretation adopted from Hottinger (1997), 
Pomar (2001b) and Rasser and Nebelsick (2003). FWWB: Fair weather wave base; SWB: Storm wave base; A-M: facies defined in Figures 8-11.

Figure 7. Chronostratigraphic scheme for the Asmari Formation across the northwestern part of the Zagros basin. Correlation of depositional environments, 
biozones and third-order sequences across the study area is shown (see text for explanations). Deposition of the Asmari Formation started earlier in the 
southwest, in a deeper environment (over the Pabdeh Formation) and continued in a relatively shallower environment. The Asmari Formation is younger 
to the east.
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with imperforate foraminifera), expressing a filling of the 
accommodation space. The sequence boundary is charac-
terized by abrupt facies changes from subtidal-lagoonal to 
tidal flat environments. Such changes reflect a significant 
decrease in water depth (Figures 8 and 9).

Sequence 2

The depositional sequence 2 formed during the late 
Chattian-early Aquitanian transgression. At Dehluran area, 
this sequence is 21 m thick, (Figure 8), and begins with 9 
m-thick sediments of the anhydrite facies. These are inter-
preted as the lowstand systems tract (LST) of this sequence. 
The contact between the LST and the basinal deposits with 
pelagic fauna (Pabdeh Formation) below is sharp. At this 
section, the TST and HST comprise an 11 m-thick, monoto-
nous succession of open marine deposits, demonstrating 
that prograding shallow-water sediments did not reach far 
west. At Kabirkuh-Darrehshahr area, 130/5 m thick (Figure 
9), the vertical variations in the facies during the transgres-
sion are different from those described in sequence 1. An 
increase in third-order accommodation space is indicated 
by shallow lagoonal facies overlain by shallow-open marine 
facies. Wackestone with abundant planktonic foraminifers 
represent deep-water facies; this is, therefore, interpreted as 
the mfs. An upward-shallowing facies trend (HST) is indi-
cated by shallow open marine gradational facies, overlain 
by shallow-lagoonal facies (Figures 8 and 9).

Sequence 3

This sequence is late Aquitanian in age and is pres-
ent in Dehluran area (48/5 m thick) and in Kabirkuh-
Darrehshahr area (14/5 m thick). At Dehluran (Figure 
8), the lowstand deposits of this sequence consist of a 
well developed anhydrite. A temporary isolation of the 
sedimentary environment would be necessary in order to be 
able to precipitate the anhydrite. At the base, the anhydrite 
is homogenous, but passes up into a more heterogenous 
composition and interdigitates with shallow water carbon-
ates. The sea level transgression caused the deposition of 
shallow subtidal facies within an aggradational staking 
pattern in Dehluran and Kabirkuh-Darrehshahr areas. The 
sequence boundary is characterized at the top by stromato-
litic boundstone (Dehluran area) and mudstone with quartz 
(Kabirkuh-Darrehshahr area), which marks the end of a 
shallowing-upward trend (Figures 8 and 9).

The development of a long, narrow, evaporitic in-
tra-basin, during the latest Oligocene-earliest Miocene 
(Chattian-Aquitanian) likely indicates an abrupt facies 
change (both laterally and vertically), which seems to 
be difficult to interpret simply by eustasy or any sedi-
mentological process alone, without any tectonic control 
(Ahmadhadi et al., 2007). An abrupt facies change from 

Figure 8. Microfacies and sequence stratigraphy of the Asmari Formation at 
Dehluran area (Section 1). TST: transgressive systems tract; LST: lowstand 
systems tract; Agg: aggradation; SB1 and SB2: sequence boundaries.
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marls to evaporites suggests a direct relationship between 
this restricted intra-basin lagoon and the deep-seated base-
ment faults. Nevertheless, eustatic control cannot be ruled 

out. Ahmadhadi et al. (2007), suggest that the genesis of this 
sub-basin has been, at least, partly tectonically controlled. 

Sequence 4

The sequence 4 is present in all sections (Dehluran, 
117/5; Kabirkuh-Darrehshahr, 55; Mamulan, 69/5; and 
Sepid Dasht, 82/5 m thick).

The lower boundary of Sequence 4 in Dehluran and 
Kabirkuh-Darrehshahr areas is characterized by a type 2 
sequence boundary (Figures 8 and 9), whereas in Mamulan, 
(section 3) and Sepid Dasht, (section 4) areas it is defined 
by a type 1 sequence boundary (Figures 10 and 11). A long 
period of lagoonal conditions reflecting a balanced situation 
between accommodation and sedimentation characterizes 
the sequence 4 in Dehluran and Kabirkuh-Darrehshahr 
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Figure 9. Microfacies and sequence stratigraphy of the Asmari Formation 
at Kabirkuh-Darreshahr area (Section 2). TST: transgressive systems 
tract; EHST; early highstand systems tract; LHST; late highstand systems 
tract; mfs: maximum flooding surface; Agg: aggradation; SB1 and SB2: 
sequence boundaries.

Figure 10. Microfacies and sequence stratigraphy of the Asmari Formation 
at Mamulan area (Section 3). TST: transgressive systems tract; HST; 
highstand systems tract; mfs: maximum flooding surface; SB1 and SB2: 
sequence boundaries.



Vaziri-Moghaddam et al.68

S S

S
S

SS

S

S

S
S

S

S

S
S

S
S

S SS

~ ~
~

~
~

~~

.
. .

.

..
.

M
 I

 O
 C

 E
 N

 E

A
S

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
M

A
R

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
I

U
 p

 p
 e

 r

B
   

u 
  r

   
d 

  i
   

g 
  a

   
l 

  i
   

a 
  n

RAZAK

E
 O

 C
 E

 N
 E

IE J K L M

SB 1

~ ~
~

~

V

V

V

V V

T

SB 1

B
or

el
is

 m
el

o 
cu

rd
ic

a 
- 

B
o
re

li
s 

m
el

o 
m

el
o

as
se

m
bl

ag
e 

zo
ne

LITHOLOGY

S
eq

ue
nc

e
S

tr
at

ig
ra

ph
y Microfacies

B
io

zo
ne

s

F
or

m
at

io
n

T
im

e 
U

ni
ts

S
am

pl
e 

N
o.

E
po

ch

A
ge

Open marine

La
go

on

S
H

A
H

B
A

Z
A

N T20

T21

T22

T23

T24

T25

T26

T27

T28

T29

T30

T40

T41

T42

T43

T44

T45

T46

T47

T48

T49

T50

T51

T52

T53

T54

T55

T56

T57

T58

T59

T60

T61

T62

T63

T64

T65

T66

T67

T68

T69

T70

T71

T72

T73

T74

T75

T76

T77

T38

T39

T31
T32

T33
T34

T35
T36

T37

T15

T16

T17

T18

T19

0

10 m

EHST : Early highstand systems tract
HST

mfs : maximum flooding surface

SB : Sequence boundary

LHST : Late highstand systems tract

TST : Transgressive systems tract

LST : Lowstand systems tract

Agg :Aggradation

mfs

EH

T

A

LH
SB
L

Sequence Stratigraphy
LimestoneDolomitic limestone

DolomiteAnhydrite / gypsum

Marly limestone

Lithology

Facies
E. Dendritina miliolids wackestone-packstone-grainstone
I. Bioclastic corallinacean coral floatstone-rudstone
J. Bioclastic Miogypsina corallinacean wackestone-packstone
K. Bioclastic nummulitidae Amphistegina packstone
L. Bioclastic pelagic foraminifera Miogypsina wackestone
M. Bioclastic pelagic foraminifera wackestone

areas. Following the very shallow subtidal deposition of 
the uppermost part of the sequence 4 at Mamulan area, a 
clearly marine deepening occurred and led to the deposition 
of shallow lagoonal facies, forming a TST. The overlying 
wackestone-packstone with diverse fauna reflects a mfs, 
and the beginning of deposition of a HST. The overlying 
mfs, rich in imperforate foraminifera, have been deposited 
in a calm and shallow-lagoonal environment; this part is 
interpreted as a HST. Above type 1 sequence boundary 
at Sepid Dasht area, there are limestones of open marine 

facies with a rich planktonic foraminifera, perforate larger 
benthic foraminifera, corallinacean and coral fragments. 
These sediments were characterized by constant open 
marine environmental conditions, representing constant 
accommodation at Sepid Dasht area.

Ehrenberg et al. (2007) recognized some surfaces in 
well sections from the Bibi Hakimeh, Marun, and Ahwaz 
oilfields and interpreted them as sequence boundaries (Ch 
20 SB, Ch 30 SB, Aq 10 SB, intra-Aq10 SB, Aq20/Bu10 
SB, Bu 20 SB). Because these sequence boundaries were 
not recognized in the study area, the sequence stratigraphy 
of Ehrenberg et al. (2007) can not be confidently applied 
to these sections.

On the basis of facies changes (Figures 8 and 9), in 
both sections (1 and 2), sequence boundaries recognized 
in the upper part of the Chattian and the middle part of the 
Aquitanian, may be associated with the Aq 10 and Aq20/Bu10 
sequence boundaries recognized by Ehrenberg et al. (2007).

The depositional sequences 1, 2 and 3 were observed 
in Dehluran and Kabirkuh-Darrehshahr areas (sections 1 and 
2), and are synchronous with a period of either erosion or 
non-deposition represented by unconformities in Mamulan 
and Sepid Dasht areas (sections 3 and 4) (Figures 7-12).

CONCLUSIONS

The Oligocene–Miocene Asmari Formation of the 
Zagros basin is a thick sequence of shallow water carbon-
ate. The outcrops of the Asmari Formation in northwest of 
the Zagros (Dehluran, Kabirkuh- Darreshahr, Sepid Dasht 
and Mamulan areas) allow the recognition of different 
depositional environments, on the basis of sedimentological 
analysis, distribution of foraminifera and microfacies stud-
ies. These depositional environments correspond to inner, 
middle and outer ramp. In the inner ramp, the most abundant 
lithofacies are medium-grained wackestone–packstone with 
imperforated foraminifera. The middle ramp is represented 
by packstone–grainstone to floatstone with a diverse as-
semblage of larger foraminifera with perforate wall, red 
algae, bryozoa, and echinoids. The outer ramp is dominated 
by argillaceous wackestone characterized by planktonic 
foraminifera and large and flat nummulitidae and lepido-
cyclinidae. Four third-order sequences are identified on the 
basis of deepening and shallowing microfacies patterns and 
on the distribution of Oligocene-Miocene foraminifers. 
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