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ABSTRACT

In two earlier papers (Verma and Quiroz-Ruiz, 2006, Rev. Mex. Cienc. Geol., 23, 133-161, 302-319) 
precise critical values for normal univariate samples of sizes n up to 100 have been reported. However, 
for greater n, critical values are available only for a few tests: N1 for n up to 147, N4k2 for n up to 149, 
N6, N14 and N15 (for the latter three tests, critical values were reported for only n=200, 500, and 1000). 
This clearly demonstrates the need for proposing new critical values for n>100 through an adequate 
statistical methodology. Therefore, modifi cations of our earlier simulation procedure as well as new, 
precise, and accurate critical values or percentage points (with four to eight decimal places; average 
standard error of the mean ~0.00000003–0.0039) of 15 discordancy tests with 33 test variants, and each 
with seven signifi cance levels α = 0.30, 0.20, 0.10, 0.05, 0.02, 0.01, and 0.005, for normal samples of sizes 
n up to 1000, viz., nmin (1)100(5)200(10)500(20)1000, are reported. For the fi rst time in the literature, the 
standard error of the mean is also reported explicitly and individually for each critical value. Similarly, 
a new methodology involving artifi cial neural network (ANN) was used, for the fi rst time in published 
literature, to obtain interpolation equations for all 33 discordancy test variants and for each of the seven 
signifi cance levels. Each equation was fi tted using 76 simulated data for n from 100 to 1000 for a given 
test and signifi cance level. Extremely small sums of squared residuals (~5.5×10-8 – 8.4×10-5; generally 
<10-5) in the ANN equations fi tted for n=100 to 1,000 were obtained. As a result, the applicability of 
these discordancy tests is now extended up to 1000 observations of a particular parameter in a statistical 
sample. The new most precise and accurate critical values will result in more reliable applications of these 
discordancy tests than have been possible so far in various scientifi c and engineering fi elds, particularly 
for quality control in Earth Sciences. The multiple-test method with new critical values was shown to 
perform better than both the box-and-whisker plot and the “two standard deviation” methods used by 
some researchers, and is therefore the recommended procedure for handling experimental data. 

Key words: outlier methods, normal sample, two standard deviation method, 2s method, reference 
materials, Monte Carlo simulation, critical values, Dixon tests, skewness, kurtosis, artifi cial neural 
network, ANN, statistics, petroleum hydrocarbon, Nd isotopes, BCR-1. 
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INTRODUCTION

Two recent papers (Verma and Quiroz-Ruiz, 2006a, 
2006b) have reported a highly precise and accurate Monte 
Carlo type simulation procedure for N(0,1) random normal 
variates and presented new, precise, and accurate critical val-
ues for seven signifi cance levels α = 0.30, 0.20, 0.10, 0.05, 
0.02, 0.01, and 0.005, and for sample sizes n up to 100 for 15 
discordancy tests with 33 variants. Table 1 summarizes these 
tests. However, for greater n, only a few critical values are 
available in the literature (Barnett and Lewis, 1994; Verma, 
2005). These values are for tests: N1 (n up to 147); N4k2 
(n up to 149); N6, N14 and N15 (for the latter three tests, 
critical values with only two decimal places were reported 
for only n =200, 500, and 1000). 

Reference materials (RMs) are routinely used for 
quality control in Earth Sciences (e.g., Verma, 1997, 1998, 
2005; Velasco-Tapia et al., 2001; M.P. Verma, 2004; Lozano 
and Bernal, 2005; Guevara et al., 2005; Sang et al., 2006; 
Santoyo et al., 2006; Papadakis et al., 2007). In other fi elds 
of science and engineering also, quality control through 
RMs has become mandatory, for example, in biology and 
medicine (Okamoto et al., 1996; Dybczyński et al., 1998; 

Patriarca et al., 2005); environmental sciences (Gill et al., 
2004; Graybeal et al., 2004; Farre et al., 2006); and food 
research (In´t Veld, 1998; Langton et al., 2002; Gabrovská 
et al., 2006).

When a large number of laboratories around the world 
participate in a cooperative study of a RM, the number of 
individual data (n) for a given chemical element in that RM 
can exceed 100. In these cases, at present the multiple-test 
method initially proposed by Verma (1997) and practiced 
by Verma (1998, 2005) and Verma and Quiroz-Ruiz (2006a, 
2006b), among others, is not likely to be appropriately ap-
plicable due to the unavailability of precise critical values 
for n >100 for most discordancy tests (Table 1). This clearly 
demonstrates the need for proposing new critical values 
for n >100 through an adequate statistical methodology. 
Requirements of critical values for large n (>100) also 
exist in an altogether different fi eld of molecular and cel-
lular proteomics (Xia et al., 2006; Murray Hackett, written 
communication, June 2007).

For the present work, we have included most dis-
cordancy tests for normal univariate samples (15 tests 
with 33 test variants; see Table 1) for simulating new, 
precise, and accurate critical values for the same seven 

RESUMEN

En dos trabajos anteriores (Verma and Quiroz-Ruiz, 2006, Rev. Mex. Cienc. Geol., 23, 133-161, 
302-319) se han reportado valores críticos precisos para pruebas de discordancia en muestras normales 
univariadas n hasta 100. Sin embargo, para n >100, se dispone solamente de valores críticos para las 
pruebas: N1 para n hasta 147, N4k2 para n hasta 149, N6, N14 y N15 (para las últimas tres pruebas, 
valores críticos han sido reportados solamente para n=200, 500 y 1000). Esto demuestra claramente 
la necesidad de proponer nuevos valores críticos para n>100 mediante una metodología estadística 
apropiada. Por lo tanto, se reportan las modifi caciones del procedimiento de la simulación así como 
valores críticos o puntos porcentuales nuevos y más precisos y exactos (con cuatro hasta ocho puntos 
decimales; el error estándar de la media ~ 0.00000003 – 0.0039) para 15 pruebas de discordancia con 33 
variantes, y cada una con siete niveles de signifi cancia α = 0.30, 0.20, 0.10, 0.05, 0.02, 0.01 y 0.005, para 
muestras normales con tamaño n hasta 1000, viz., nmin (1)100(5)200(10)500(20)1000. Por primera vez 
en la literatura, se reporta el error estándar de la media explícitamente y en forma individual para cada 
valor crítico. De igual manera, una nueva metodología que consiste en la aplicación de redes neuronales 
artifi ciales (ANN, por sus siglas en inglés) fue usada, por primera vez en la literatura publicada, para 
obtener ecuaciones de interpolación para las 33 variantes de las pruebas de discordancia y para cada 
uno de los siete niveles de signifi cancia. Cada ecuación fue ajustada con los 76 datos de las simulaciones 
para n desde 100 hasta 1,000 correspondientes a cada prueba y cada nivel de signifi cancia. Sumas de 
cuadrados de los residuales extremadamente pequeñas (~5.5×10-8 – 8.4×10-5; generalmente <10-5) 
fueron obtenidas en el ajuste de las ecuaciones por ANN para n =100 a 1,000. Como consecuencia, 
la aplicabilidad de las pruebas de discordancia ha sido extendida hasta 1,000 observaciones de un 
determinado parámetro en una muestra estadística. Los valores críticos nuevos y mucho más precisos y 
exactos resultarán en aplicaciones más confi ables de las pruebas de discordancia que han sido posibles 
hasta ahora en una variedad de campos de las ciencias e ingenierías, particularmente para el control de 
calidad en Ciencias de la Tierra. El método de pruebas múltiples con nuevos valores críticos proporcionó 
mejores resultados que los métodos de la gráfi ca de “box y whisker” y de “dos desviaciones estándar” 
usados por algunos investigadores y, por lo tanto, el presente método estadístico es el más recomendado 
para el manejo de datos experimentales. 

Palabras clave: métodos de valores desviados, muestra normal, prueba de dos desviaciones estándar, 2s, 
materiales de referencia, simulación Monte Carlo, valores críticos, pruebas de Dixon, sesgo, curtosis, 
redes neuronales artifi ciales, RNA, estadística, hidrocarburos de petróleo, isótopos de Nd, BCR-1.
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Test 
code *

Value(s)
tested

Test statistic Test 
signifi cance

Applicability of test
nmin – nmax

Literature pre-2006
(less precise 
values) **

Literature 2006
(more precise 
values) ***

This work, 2008
(most precise 
values) ****

N1 Upper x(n) TN1(u) = (x(n)-x)/s Greater 3 – 100 3 – 100 3 – 1000 
Lower x(1) TN1(l) = (x-x(1))/s Greater 3 – 100 3 – 100 3 – 1000

N2
(two-

sided)

Extreme x(n) or x(1) TN2 = Max: {(x(n)-x)/s, (x-x(1))/s} Greater 3 – 100 3 – 100 3 – 1000

N3 k=2
Upper

x(n), x(n-1) TN3(2u) = (x(n)+x(n-1)-2x)/s Greater 5 – 100 5 – 100 5 – 1000

k=3
Upper

x(n), x(n-1), x(n-2) TN3(3u)=(x(n)+x(n-1)+x(n-2)-3x)/s Greater 7 – 100 7 – 100 7 – 1000

k=4
Upper

x(n), x(n-1), x(n-2), 
x(n-3)

TN3(4u)=(x(n)+x(n-1)+x(n-2) +x(n-3)-4x)/s Greater 9 – 100 9 – 100 9 – 1000

k=2 
Lower

x(1), x(2) TN3(2l)=(2x-x(1)-x(2))/s Greater 5 – 100 5 – 100 5 – 1000

k=3 
Lower

x(1), x(2) , x(3) TN3(3l)=(3x-x(1)-x(2)-x(3))/s Greater 7 – 100 7 – 100 7 – 1000

k=4 
Lower

x(1), x(2), x(3) , x(4) TN3(4l)=(4x-x(1)-x(2)-x(3)-x(4))/s Greater 9 – 100 9 – 100 9 – 1000

N4 k=1
Upper

x(n) TN4(1u)=S2
   /S2

                      

    (n) Smaller 3 – 100 3 – 100 3 – 1000

k=2
Upper

x(n), x(n-1) TN4(2u)=S2            /S2 

                

          
(n),(n-1) Smaller 4 – 100 4 – 100 4 – 1000

k=3
Upper

x(n), x(n-1), x(n-2) TN4(3u)=S2                      /S2 

                          

(n),(n-1), (n-2) Smaller 6 – 100 6 – 100 6 – 1000

k=4
Upper

x(n), x(n-1), 
x(n-2), x(n-3)

TN4(4u)=S2                               /S2 
                          (n),(n-1), (n-2),(n-3) Smaller 8 – 100 8 – 100 8 – 1000

k=1
Lower

x(1) TN4(1l)=S2
   /S2

                     

    (1) Smaller 3 – 100 3 – 100 3 – 1000

k=2 
Lower

x(1), x(2) TN4(2l)=S2
         /S2

                     

    (1),(2) Smaller 4 – 100 4 – 100 4 – 1000

k=3 
Lower

x(1), x(2) , x(3) TN4(3l)=S2
               /S2

                      

   (1),(2),(3) Smaller 6 – 100 6 – 100 6 – 1000

k=4 
Lower

x(1), x(2), x(3) , x(4) TN4(4l)=S2
                    /S2

                     

    (1),(2),(3),(4) Smaller 8 – 100 8 – 100 8 – 1000

N5 k=2 
Upper– 
Lower

x(n), x(1)  TN5(ul)=S2
         /S2

                     

      (n),(1) Smaller 4 – 100 4 – 100 4 – 1000

N6 k=2 
Upper– 
Lower

x(n), x(1) TN6(ul)=(x(n)-(x(1))/s Greater 3 – 100 3 – 100 3 – 1000

N7
(r10)

Upper x(n) TN7=(x(n)-x(n-1))/ (x(n)-x(1)) Greater 3 – 30 3 – 100 3 – 1000

N8
(two-

sided)

Extreme x(n), or x(1) TN8=Max:
{(x(n)-x(n-1))/ (x(n)-x(1))}
{(x(2)-x(1))/ (x(n)-x(1))}

Greater 4 – 100 4 – 100 4 – 1000

Table 1. Fifteen discordancy tests with 33 test variants for univariate normal samples (modifi ed after Barnett and Lewis, 1994; Verma, 1997, 2005; Verma 
and Quiroz-Ruiz, 2006a, 2006b).
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Test 
code *

Value(s)
tested

Test statistic Test 
signifi cance

Applicability of test
nmin – nmax

Literature pre-2006
(less precise 
values) **

Literature 2006
(more precise 
values) ***

This work, 2008
(most precise 
values) ****

N9
(r11)

Upper x(n) TN9(u) =(x(n)-x(n-1))/)(x(n)-x(2)) Greater 4 – 30 4 – 100 4 – 1000
Lower x(1) TN9(l) =(x(2)-x(1))/(x(n-1)-x(1)) Greater 4 – 30 4 – 100 4 – 1000

N10
(r12)

Upper x(n) TN10(u) =(x(n) - x(n-1)) / (x(n )- x(3)) Greater 5 – 30 5 – 100 5 – 1000
Lower x(1) TN10(l) =(x(2) - x(1)) / (x(n-2 )- x(1)) Greater 5 – 30 5 – 100 5 – 1000

N11
(r20)

Upper 
pair

x(n), x(n-1) TN11up =(x(n) - x(n-2)) / (x(n )- x(1)) Greater 4 – 30 4 – 100 4 – 1000

Lower 
pair

x(1), x(2) TN11lp =(x(3) - x(1)) / (x(n )- x(1)) Greater 4 – 30 4 – 100 4 – 1000

N12
(r21)

Upper 
pair

x(n), x(n-1) TN12up =(x(n) - x(n-2)) / (x(n )- x(2)) Greater 5 – 30 5 – 100 5 – 1000

Lower 
pair

x(1), x(2) TN12lp =(x(3) - x(1)) / (x(n-1 )- x(1)) Greater 5 – 30 5 – 100 5 – 1000

N13
(r22)

Upper 
pair

x(n), x(n-1) TN13up =(x(n) - x(n-2)) / (x(n )- x(3)) Greater 6 – 30 6 – 100 6 – 1000

Lower 
pair

x(1), x(2) TN13lp =(x(3) - x(1)) / (x(n-2 )- x(1)) Greater 6 – 30 6 – 100 6 – 1000

N14 Extreme x(n), or x(1)
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N15 Extreme x(n), or x(1)
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Table 1 (continued). Fifteen discordancy tests with 33 test variants for univariate normal samples (modifi ed after Barnett and Lewis, 1994; Verma, 1997, 
2005; Verma and Quiroz-Ruiz, 2006a, 2006b).

* Test code (N series) is from Barnett and Lewis (1994), whereas test code (r series) is for Dixon tests (see Dixon, 1951); tests N14 and N15 are respec-
tively the skewness and kurtosis tests. The symbols for test statistics TN1(u), TN1(l),TN2, etc. have been proposed by Verma (2005) and used by Verma 
and Quiroz-Ruiz (2006a, 2006b). The subscripts (u), (l), (2u), and (2l) are, respectively, upper (the highest), lower (the lowest), upper pair, and lower 
pair observations. The test statistics are self explanatory except the statistics of the type “reduced sum of squares” / “total sum of squares” for example, 
S(n)/S2 for test N4–k=1, proposed by Grubbs (1950, 1969), which need some explanation. For an ordered array x(1), x(2), x(3),… x(n-2), x(n-1), x(n), the S2 term is 
calculated using all data S2=Σi=1(x(i)-x)2 , where x is the arithmetic mean (x=Σi=1x(i)/n), whereas S(n) is computed from the (n-1) remaining data x(1), x(2), x(3),…, 
x(n-2), x(n-1), after eliminating the highest datum to be tested x(n) (see the subscript (n) in the term S(n) as follows: S(n)=Σi=1(x(i)-xn)2 where xn= Σi=1 x(i)/(n-1). The 
other statistics of the type S(n)/S2, such as S(1)/S2 or S(n), (n-1)/S2 are calculated in a similar manner. For more details, see Verma (2005). 
** For literature values see books by Barnett and Lewis (1994) and Verma (2005).
*** Verma and Quiroz-Ruiz (2006a, 2006b) increased nmax to 100 by simulating more precise and accurate critical values for all discordancy tests.
**** Finally, note that, in the present work, nmax has been increased to 1000 for all discordancy tests (see Tables A1-A40 of the electronic supplement), 
and when critical values were already available for this nmin – nmax range, the new values are shown to be more precise and accurate than even Verma 
and Quiroz-Ruiz (2006a, b) (see Fig. 1 for comparison of standard errors of the simulated critical values). Because critical values were simulated for 
nmin(1)100(5)200(10)500(20)1000 (see Tables A1-A40 and A41 of the electronic supplement), interpolation equations using 76 newly generated critical 
values for n from 100 to 1,000 (a total of 140 equations for all discordancy tests and α = 0.30, 0.20, 0.10, 0.05, 0.02, 0.01, and 0.005) were proposed for 
correctly obtaining the “missing” values for n between 100 and 1000 (see Table 2 and Tables A42-A60 of the electronic supplement). For more informa-
tion on these tests and their applications, see references cited in Verma and Quiroz-Ruiz (2006b).
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significance levels (α = 0.30 to 0.005) and for n up to 
1000, viz., nmin (1)100(5)200(10)500(20)1000 (where nmin 
is the minimum number of data that could be tested by 
a given statistical test; see Table 1), using a simulation 
procedure slightly modifi ed after Verma and Quiroz-Ruiz 
(2006a, 2006b). Further, a novel approach is followed, for 
the fi rst time in the literature, for presenting these new 
critical values along with the respective standard errors 
and for interpolating the simulated critical values using 
artifi cial neural network (ANN). These results are useful in 
all fi elds of science and engineering, especially in quality 
control in Earth Sciences. We present a few examples of 
the application of all normal univariate tests (Table 1) for 
which we have reported new, most precise critical values 
in this paper.

DISCORDANCY TESTS

We will not repeat the explanation of discordancy 
tests; the reader is referred to Barnett and Lewis (1994), 
Verma (2005), or the recent papers by Verma and Quiroz-
Ruiz (2006a, 2006b). The 15 tests with their 33 variants for 
which critical values were simulated are listed in Table 1. 

SIMULATION PROCEDURE FOR MOST PRECISE 
AND ACCURATE CRITICAL VALUES

Our highly precise and accurate Monte Carlo type 
simulation procedure has already been described in detail 
(Verma and Quiroz-Ruiz, 2006a, 2006b) and, therefore, will 
not be repeated here. However, some required changes will 
be mentioned. 

In our present work, the simulations were of sizes 
500,000 for tests N3-N5 and N7-N13; 1,000,000 for N14; 
and 2,000,000 for N1, N2, N6, and N15. They were repeated 
ten times (each using a different set of 500,000,000 to 
2,000,000,000 random normal variates). Different simula-
tion sizes (500,000 to 2,000,000) were appropriate to op-
timize the simulation time required for the use of personal 
computers and to obtain, at the same time, “acceptable” 
simulation errors for all tests. For tests N2, N5-N8, N14 and 
N15, the fi nal mean critical value or percentage point (x) 
and its standard error (sex) for each n and α were estimated 
from ten repetitions. However, for tests such as N1 (Table 
1) two independent test statistics (one for an upper and the 
other for a lower outlier) were simulated and thus 20 inde-
pendent results could be obtained from the same simulation 
scheme as reported earlier (Verma and Quiroz-Ruiz, 2006a, 
2006b). Besides test N1, because of the existence of the up-
per and lower versions of the statistic (Table 1), 20 results of 
critical values and their error estimates were also obtained 
for tests N3–k=2,3,4, N4–k=1,2,3,4, and N9-N13. For all 
these tests, therefore, x and sex calculations were based on 
20 independent results. 

RESULTS OF NEW CRITICAL VALUES 

Both sex and x data for 33 discordancy test variants 
(Table 1), for n from nmin (3, 4, 5, 6, 7, 8, or 9, depending on 
the type of statistic to be calculated) up to 1000, viz., nmin 
(1)100(5)200(10)500(20)1000, and α = 0.30, 0.20, 0.10, 
0.05, 0.02, 0.01, and 0.005 (corresponding to confi dence 
level of 70% to 99.5%, or equivalently signifi cance level 
of 30% to 0.5%), are summarized in Tables A1-A40 (40 
tables in the electronic supplement; 20 odd-numbered ta-
bles for sex and 20 even-numbered tables for x). Thus, our 
data presentation approach is novel because, for the fi rst 
time in the literature, the precision estimates are explicitly 
tabulated for each critical value. For example, in Table A1 
the rounded sex values are presented individually for each n 
and α, whereas in Table A2 the rounded x values are simi-
larly listed for test N1; the rounding procedure follows the 
guidelines suggested by Verma (2005). Similarly, sex and x 
values are presented consecutively for the remaining tests 
N2 to N15 in Tables A3-A40.

For all cases, our present values are more reliable (er-
ror is given by a small number on the third up to the eighth 
decimal place) than the earlier literature values (compiled 
by Barnett and Lewis, 1994; Verma, 2005), including those 
reported by Verma and Quiroz-Ruiz (2006a, 2006b). In fact, 
the errors of these literature critical values, except those by 
Verma and Quiroz-Ruiz (2006a, 2006b), are not precisely 
known. A synthesis of standard errors of the mean for all 
tests is presented in Table A41 of the electronic supple-
ment. The errors of the present critical values for n up to 
1,000 (Table A41) range as follows: ~0.00000009–0.0007 
for test N1 (see also Table A1); ~0.00000003–0.0009 
for test N2 (Table A3), ~0.00005–0.0019 for N3–k=2 
(Table A5); ~0.00009–0.0020 for N3–k=3 (Table A7); 
~0.00010–0.0021 for N3–k=4 (Table A9); ~0.00000023–
0.00040 for N4–k=1 (Table A11); ~0.00000007–0.00025 
for N4–k=2 (Table A13); ~0.0000017–0.00021 for N4–k=3 
(Table A15); ~0.0000021–0.00018 for N4–k=4 (Table 
A17); ~0.00000005–0.00035 for N5–k=2 (Table A19); 
~0.00000005–0.0012 for N6–k=2 (Table A21); ~0.000016–
0.0005 for N7 (Table A23); ~0.000015–0.0006 for N8 
(Table A25); ~0.000015–0.00028 for N9 (Table A27); 
~0.000016–0.00032 for N10 (Table A29); ~0.000015–
0.00028 for N11–k=2 (Table A31); ~0.000008–0.00025 for 
N12–k=2 (Table A33); ~0.000011–0.00024 for N13–k=2 
(Table A35); ~0.000023–0.0012 for N14 (Table A37); and 
~0.000015–0.0039 for N15 (Table A39). 

The much greater precision (and accuracy) of criti-
cal values simulated by Verma and Quiroz-Ruiz (2006a, 
2006b) as compared to the literature values was already 
documented. Here, we compare the mean values of the 
standard errors for n up to 100 for all tests obtained in the 
present work with those obtained by Verma and Quiroz-Ruiz 
(2006a, 2006b) and show that the most precise critical values 
than ever attempted in the literature are now being reported 
(Table A41; see also Figure 1). And this improvement is due 
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to the fact that much larger simulation sizes of 500,000 to 
2,000,000 are used in the present work, which have resulted 
in smaller standard errors than was earlier possible from 
sizes of 100,000 to 500,000. Further, when in the present 
work the sample sizes were exactly the same as those in 
Verma and Quiroz-Ruiz (2006b), for example, 500,000 
for tests N3–k=2, 3, and 4 (see footnote of Table A41 for 
a correction and explanation), the errors were exactly the 
same (see diamond symbols that plot right at the diagonal 
line in Figure 1). For these cases, not only the errors were 
exactly the same, but also the critical values were identical 
in both simulations (this work and Verma and Quiroz-Ruiz, 
2006b). This is an interesting observation and testifi es the 
high reproducibility of our simulation procedure because 
the earlier simulations (Verma and Quiroz-Ruiz, 2006b) 
were programmed in C whereas the present simulations 
were programmed in a different language (Java) and were 
run on a different and faster personal computer equipped 
with a different processor than our earlier work. 

As our earlier tables for sample sizes up to 100 (Verma 
and Quiroz-Ruiz, 2006a, 2006b), these new critical value 
data, along with their individual uncertainty estimates, are 
available in other formats such as txt, Excel, or Statistica, 
on request from the authors (S.P. Verma spv@cie.unam.mx, 
A. Quiroz-Ruiz aqr@cie.unam.mx, or L. Díaz-González 
ldg@cie.unam.mx). Similarly, the interpolation equations 
(see below) can also be obtained in a doc fi le with plain 
text format.

RESULTS OF INTERPOLATIONS OF CRITICAL 
VALUES USING ARTIFICIAL NEURAL 
NETWORK (ANN)

A new methodology was developed that involved 
the use of ANN for obtaining the best-fi tted interpolation 
equations. This was actually required because, for 100 ≤ 
n ≤1000, critical values were not simulated for all n (see 
Table 1 for tests and Tables A1-A40 for information on 
simulated n). No attempt was made in the present work to 
fi t equations to critical values for n <100 mainly because 
precise and accurate critical values for all n <100 have 
already been simulated (Verma and Quiroz-Ruiz, 2006a, 
2006b; this work). Therefore, interpolation equations were 
actually not required for small n. Prior to our work, differ-
ent kinds of interpolation or fi tting (Bugner and Rutledge, 
1990; Rorabacher, 1991; Verma et al., 1998) to low preci-
sion critical values available in the literature (see Barnett 
and Lewis, 1994; Verma, 2005; Verma and Quiroz-Ruiz, 
2006a, 2006b) were used for this purpose. 

This is the fi rst time in published literature that ANN 
was used for fi tting highly sophisticated equations to the 
most precise and accurate simulated critical value data for 
n between 100 and 1000, with extremely small sums of 
squares of residuals and thence for predicting interpolated 
critical values with the smallest error. Details on the ANN 
can be found in Hassoun (1995) or Haykin (1999).

The fi tted equations for test N1 using all critical values 

Figure 1. Comparison of new average values of standard errors of mean critical values obtained in the present work for all tests (15 tests with 33 vari-
ants) with those recently reported by Verma and Quiroz-Ruiz (2006a, 2006b) for α = 0.30 to 0.005. The diagonal line represents those cases for which 
the present errors are the same as those obtained by Verma and Quiroz-Ruiz (2006a, 2006b); see text for more details.
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CL / SL / α ANN Model Σ(SIM – ANN)2 Interpolation equation

70% / 30% / 0.30 4-1 2.9393 × 10-7

0.9585-))99749.0h(0.01155(1.8669tan                  
0.95374))9h(0.003536(1.8356tan                  

0.20499))-0088756 tanh(-0.0(-0.7967                  
11.6994))2306tanh(-0.01(-0.001243 ][ 30.0

1

+
++
+

++=

n
n

n
nCV ANNTN

80% / 20% / 0.20 4-1 2.3957 × 10-7

1.0934-1.0372))-73nh(-0.0116(-2.0527ta                  
0.9971))6h(0.003474(2.0193tan                  
0.11186))-135nh(-0.0009(-0.6805ta                  

11.3938))119384tanh(-0.0(-0.001152 ][ 20.0
1

n
n

n
nCV ANNTN

++
+

++=

90% / 10% / 0.10 5-1 5.1654 × 10-7

0.0189950.92192))h(0.011746(1.6954tan                     
0.86195))-703nh(-0.0033(-1.7327ta                     

0.38373))2735anh(-0.001(-0.34746t                     
10.2114))2227tanh(-0.01(-0.001136                     
15.0842))-64tanh(0.015(0.0021069][ 10.0

1

++
+
++
++
+=

n
n

n
n
nCV ANNTN

95% /5% / 0.05 5-1 9.8369 × 10-7

0.28933-0.98245))-11nh(-0.0126(-1.9421ta                       

0.92815))4h(0.003592(1.9633tan                       
0.38418))487nh(-0.0013(-0.3394ta                       
9.4696))-301tanh(0.011(0.0019383                       
14.9292))-256tanh(0.015(0.0028268][ 05.0

1

n

n
n
n
nCV ANNTN

++
++
+
+=

98% / 2% / 0.02 5-1 1.76 × 10-7

2.46620.78004))-22nh(-0.0106(-1.4643ta                      
0.65921))6h(0.002614(1.4478tan                      
1.4029))-76nh(0.00221(0.11713ta                      

8.7164))-6589tanh(0.009(0.0049522                      
15.7713))-h(0.012409(1.3706tan ][ 02.0

1

+
++
+
+

+=

n
n
n

n
nCV ANNTN

99% / 1% / 0.01 5-1 3.038 × 10-7

0.40371.5225))-h(-4.6921(3.5326tan                    
1.3041))-313nh(-0.0027(-3.3628ta                    

1.2801))7h(0.009737(3.5681tan                    
0.17292))-69273anh(-0.000(-0.63729t                    

13.7692)) 337781tanh(-0.0(0.0001709][ 01.0
1

+
+
++

+
++=

n
n

n
n

nCV ANNTN

 5-1 4.059 × 10-6

0.875850.7881))-57nh(-0.0130(-1.6503ta                   
0.81002))(0.0034361(1.696tanh                   

0.61062))4606anh(-0.001(-0.25014t                   
10.7273))-468tanh(0.012(0.0012184                   

15.3358))-463tanh(0.015(0.0022291][ 005.0
1

+
++

++
+

+=

n
n

n
n

nCV ANNTN

Table 2. Interpolation equations fi tted from ANN to 76 simulated critical values of Test N1 (for n between 100 and 1000; Table A2), used for 
computing interpolated precise critical values for 100 > n > 1000 (see Table A2 for those n for which critical values were simulated and for which 
interpolated critical values were required).

CL: Confi dence level (%); SL: Signifi cance level (%); α: Signifi cance level; ANN: Artifi cial Neural Network; Σ(SIM – ANN)2 = sum of squares of residu-
als for n = 100 to n = 1000. The fi rst number in the ANN Model column refers to the number of neurons used at the input side of the ANN; only one 
output neuron was always used. Note the total number of terms in a given equation is the sum of the numbers of input and output neurons. The fi tting 
quality parameter Σ(SIM – ANN)2 is the total sum of squares of the difference between the simulated critical value (SIM) and that predicted by the (ANN) 
equation for the 76 simulated values corresponding to n = [100(5)200(10)500(20)1000] for a given CL (see Table A2 for the SIM values for n =100 to 
1000 used for this fi tting). Note that independent equations were fi tted for each confi dence level (70% to 99.5%) or signifi cance level α (0.30 to 0.005). 
[CVTN1  ]ANN in interpolation equations is the critical value (CV) for test TN1 and signifi cance level α = 0.30 obtained by ANN methodology. The parameter 
n is the sample size of the critical value to be computed from the equation for a given signifi cance level (α). [CVTN1  ]ANN  and [CVTN1 ] are the most com-
monly used critical values and the corresponding CL/SL/α are shown in italic bold face. Note also that Verma (1997) recommended the strict level of α 
= 0.01 be used in application of the multiple-test method. The other CV values in interpolation equations are similarly explained.

0.300.30

0.050.05 0.010.01

listed for n from 100 to 1000 (Table A2) for each α (from 
0.30 to 0.005) are presented in Table 2. The values of the 
sum of squared residuals of each equation (Σ(SIM–ANN)2) 
for the 76 simulated critical values, corresponding to n = 
100(5)200(10)500(20)1000 and α = 0.30, 0.20, 0.10, 0.05, 
0.02, 0.01, and 0.005, used for equation fi tting are also 
included in Table 2. For the remaining tests (N2 to N15), 

the equations are summarized in Tables A42-A60 of the 
electronic supplement. 

The fi tting quality parameter Σ(SIM–ANN)2 for the 
interpolation equations for n=100(5)200(10)500(20)1000 
(Tables 2 and A42-A60) range as follows: ~2.4×10-7 – 4.1× 
10-6 for test N1 (see Table 2); ~4.1×10-7 – 7.8×10-6 for test 
N2 (Table A42), ~1.8×10-6 – 3.0×10-5 for N3–k=2 (Table 
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A43); ~4.1×10-6 – 7.6×10-5 for N3–k=3 (Table A44); ~7.7× 
10-6–8.4×10-5 for N3–k=4 (Table A45); ~1.9×10-8 – 4.8×10-7 
for N4–k=1 (Table A46); ~1.0×10-8 – 8.2×10-7 for N4–k=2 
(Table A47); ~9.3×10-8 – 8.7×10-7 for N4–k=3 (Table A48); 
~1.9×10-7 – 8.8×10-7 for N4–k=4 (Table A49); ~7.5× 10-8 
– 5.3×10-7 for N5–k=2 (Table A50); ~6.7×10-7 – 2.2×10-5 
for N6–k=2 (Table A51); ~4.2×10-7 – 1.3×10-6 for N7 (Table 
A52); ~2.7×10-7 – 9.7×10-7 for N8 (Table A53); ~5.1× 10-7 
– 2.0×10-5 for N9 (Table A54); ~5.7×10-7 – 9.6×10-6 for 
N10 (Table A55); ~1.4×10-7 – 8.0×10-7 for N11–k=2 (Table 
A56); ~1.9×10-7 – 7.2×10-6 for N12–k=2 (Table A57); 
~2.8×10-6 – 2.9×10-5 for N13–k=2 (Table A58); ~5.7× 10-7 
– 3.0×10-5 for N14 (Table A59); and ~1.8×10-7 – 2.8×10-5 
for N15 (Table A60). Thus, the fi tting quality parameter Σ 
(SIM–ANN)2 for the interpolation equations was generally 
<10-5 (and always <10-4).

These equations can be used to compute precisely the 
interpolated critical values for all n between 100 and 1000, 
for which such values are not listed in Tables A2-A40 (see 
even-numbered tables). Thus, precise critical values can 
be made available for all n between nmin and 1000, viz., 
nmin (1)1000 (see Table 1 for more information on all tests 
and their nmin values). Figure 2 shows, as an example, the 
simulated critical values for test N1 (CVTN1) for all values 
of α (0.30 to 0.005) as a function of n (from 100 to 1000). 
The respective interpolation equations are also plotted using 

dotted or dashed curves. Note these equations very closely 
match the simulated critical values to such an extent that the 
curves cannot be properly observed in Figure 2.

APPLICATIONS IN SCIENCE AND 
ENGINEERING 

The tests (Table 1) after extending their applicabil-
ity to samples of sizes up to 1,000, can be applied to all 
examples earlier summarized by Verma and Quiroz-Ruiz 
(2006a, 2006b). These include all the following fi elds (but 
are not limited to them): Agricultural and Soil Sciences; 
Aquatic Environmental Research; Astronomy; Biology; 
Biomedicine and Biotechnology; Chemistry; Electronics; 
Ecology; Geochronology; Geodesy; Geochemistry; Isotope 
Geology; Medical Science and Technology; Meteorology; 
Paleontology; Petroleum Hydrocarbons and Organic 
Compounds in Sediment Samples; Quality Assurance 
and Assessment Programs in Biology and Biomedicine, 
in Cement Industry, in Food Science and Technology, in 
Environmental and Pollution Research, in Nuclear Science, 
in Rock Chemistry, in Soil Science, and in Water Research; 
Structural Geology; Water Resources; and Zoology. Further, 
our new critical values for n up to 1,000 will be equally use-
ful for applying these discordancy tests to identify outliers 

Figure 2. Interpolation curves (drawn from the corresponding ANN equations presented in Table 2) for test N1 with all signifi cance levels α = 0.30, 0.20, 
0.10, 0.05, 0.02, 0.01, and 0.005. Note that the fi tted curves are “hidden” below the actually simulated critical values (see symbols used for each α shown 
as inset) for n = 100(5)200(10)500(20)1000; this is because both sets (fi tted curves and the corresponding simulated values) are in very close agreement 
(see Table A2 for the actual critical values). Larger symbols were used for more frequently used signifi cance levels (α = 0.05 and 0.01; the latter is the 
recommended signifi cance level to be used to test experimental data for possible outliers).
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in linear regressions, such as those recently employed by 
Verma et al. (2006).

APPLICATIONS IN QUALITY CONTROL IN 
EARTH SCIENCES 

As stated earlier in the Introduction section, the most 
important requirement for simulating critical values for 
n >100 was for processing interlaboratory data for RMs. 
This is confirmed from the information synthesized in 
Table 3. Thus, the data for all chemical elements, without 
exception, in all RMs (Table 3) can now be processed for 
possible outliers and thence for correctly computing central 
tendency (or location) and dispersion (or scale) parameters 
(see Verma, 2005, for more details) using outlier-based 
statistical methods.

Specifi c examples

We now present examples or case histories to illustrate 
the use of all discordancy tests for which new critical values 
have been obtained in this work. For these applications, we 
chose the strict confi dence level of 99% (i.e., we used the 
99% CL, or 1% SL, or 0.01 α column; see the respective 
critical values in Tables A2 to A40 – even-numbered tables 
in the electronic, supplementary data fi le).

Example 1. Comparison of multiple-test method with 
box-and-whisker plot method: Chlorinated pesticides and 
petroleum hydrocarbons in a sediment reference sample

Verma and Quiroz-Ruiz (2006b) used interlaboratory 
data for one sediment RM (IAEA-417; IAEA–International 
Atomic Energy Agency) to show that, for detecting outliers, 
the multiple-test method of Verma (1997) performed better 
than the box-and-whisker plot method used by Villeneuve 
et al. (2002). Here, we use, as the fi rst example, a different 
sediment RM (IAEA-408) from an interlaboratory study 
by Villeneuve et al. (1999) to highlight the use of the mul-
tiple-test method and compare its performance with the 
box-and-whisker plot method used by the original authors. 
The individual data for nine selected compounds (six chlo-
rinated pesticides and three petroleum hydrocarbons) were 
compiled in Table A61 (see electronic supplement) from the 
original report by Villeneuve et al. (1999). The multiple-test 
method (Table 1) consisted in applying all nine single-outlier 
(with 13 test variants) and seven multiple-outlier tests (with 
20 test variants) at the strict confi dence level of 99% to a 
given set of data although, if desired, a lesser number of tests 
or a less strict confi dence level, such as 95%, could instead 
be used. The fi nal concentration data along with the basic 
statistical information are summarized in Table 4. A greater 
number of discordant outliers were detected in the data for 
most compounds listed in Table A61, by the multiple-test 
method than the box-and-whisker plot method used by the 
original authors (Villeneuve et al., 1999). Consequently, 

Reference Material 
(RM)

Pre-2006 application 
(of Dixon tests) 
possible for # of

During 2006 application 
(of multiple test method) 

possible for # of

Present application 
(of multiple test method)  

possible for # of

Literature 
reference(s)

Code Description Major 
elements

Trace 
elements

Major 
elements

Trace 
elements

Major 
elements

Trace 
elements

AGV-1 Andesite from 
U.S.G.S.

0 15 4 39 14 (all) 54 (all) Gladney et al. (1992); 
Velasco-Tapia et al. (2001)

BCR-1 Basalt from 
U.S.G.S.

1 12 2 35 15 (all) 62 (all) Gladney et al. (1990)

G-1 Granite from 
U.S.G.S.

0 36 5 55 15 (all) 56 (all) Gladney et al. (1991)

G-2 Granite from 
U.S.G.S.

2 28 7 46 16 (all) 58 (all) Gladney et al. (1992)

GSP-1 Granodiorite  
from U.S.G.S.

3 25 6 51 16 (all) 58 (all) Gladney et al. (1992)

PM-S Microgabbro 
(Scotland) from 
G.I.T.-I.W.G.

5 19 8 47 16 (all) 48 (all) Govindaraju et al. (1994, 
1995); Verma (1997)

W-1 Diabase from 
U.S.G.S.

0 21 3 47 14 (all) 57(all) Gladney et al. (1991); 
Velasco-Tapia et al. (2001)

WS-E Whin Sill 
dolerite 
(England) from 
G.I.T.-I.W.G. 

5 15 8 44 16 (all) 46 (all) Govindaraju et al. (1994, 
1995); Verma et al. (1998)

Table 3. Improved applicability of the method of multiple tests (15 tests with 33 variants) for some RM databases (modifi ed after Verma and Quiroz-
Ruiz, 2006a).

U.S.G.S.: United States Geological Survey; G.I.T.-I.W.G.: Groupe International de Travail “Etalons analytiques des mineraux, minerais et roches or 
International Working Group “Analytical Standards of Minerals, Ores, and Rocks”.



Critical values for 33 discordancy test variants for outliers in normal samples up to sizes 1000 91

smaller standard deviations (and somewhat different mean 
values, although probably not statistically different) were 
obtained from the multiple-test method as compared to 
the box-and-whisker plot method for all cases except one 
compound (PCB101) for which none of the two methods 
detected any outliers. Note also that, because of the pres-
ence of outliers, the initial mean and standard deviation 
data strongly differ from the fi nal statistical parameters. 
Finally, had we applied the multiple-test method at a less 
strict confi dence level of 95% (which will probably be 
consistent with the box-and-whisker plot method although 
details on the respective confi dence level were not provided 
by Villeneuve et al., 1999), a greater number of outliers 
would have been identifi ed in most cases than those obtained 
at 99% confi dence level, with the consequent reduction of 
the standard deviation values obtained by our method and 
possible changes in the mean values (Table 4). 

Application of signifi cance tests, such as F-test and 
Student-t test (see Verma, 2005 for more details on signifi -
cance tests), to evaluate the performance of the multiple-
test method versus the box-and-whisker plot method is 
not advisable using the present data, because rather small 

number of degrees of freedom (7–33; the fi nal number of 
data remaining after outlier elimination vary from 8 to 31 
for nf and from 13 to 34 for nl in Table 4) are involved. We 
consider these numbers too small for quality control pur-
poses. Therefore, an objective statistical comparison of the 
multiple-test method and the box-and-whisker plot method 
should be done using larger datasets. 

Nevertheless, as in Verma and Quiroz-Ruiz (2006b), 
but using different datasets, we now conclude that the 
multiple-test method exemplifi ed in this work can be ad-
vantageously used in future to arrive at the fi nal statistical 
parameters in such interlaboratory studies. 

 Example 2. Comparison of multiple-test method with “two 
standard deviation” (2s) method: Two chemical elements 
and one isotopic ratio in a geochemical reference material 
(BCR-1) from U.S.G.S.

We present the example of just two elements (petro-
genetically important trace elements Sm and Nd) and one 
widely used radiogenic isotopic ratio (143Nd/144Nd) in a rock 
RM (Columbia River basalt) BCR-1 from the United States 
Geological Survey (U.S.G.S.), U.S.A. This RM was exten-

Chemical 
variable

Initial statistics Final statistics (this work) Final statistics (literature)

nin xin sin Rin of nf xf sf Rf ol nl xl sl Rl

Sediment RM: IAEA-408
HCB (ng/g) 32 250 1400   0.16 – 7910 10 22 0.43 0.15  0.18 – 0.71 7 25 0.45 0.19   0.16 – 0.85
pp’DDE (ng/g) 36 3 11     0.3 – 67.5 5 31 1.3 0.6  0.38 – 2.24 2 34 1.4 0.63     0.3 – 2.7
pp’DDD (ng/g) 31 3 10 0.101 – 56.7 5 26 1.0 0.6  0.20 – 2.34 1 30 1.1 0.74   0.56 – 1.7
PCB28 (ng/g) 16 1.1 0.9   0.11 – 3.49  4 12 0.64 0.32  0.11 – 1.19 2 14 0.74 0.4   0.11 – 1.51
PCB101 (ng/g) 23 1.3 0.5   0.52 – 2.46 0 23 1.3 0.5  0.52 – 2.46 0 23 1.3 0.54   0.52 – 2.46
PCB138 (ng/g) 23 1.7 0.9     0.2 – 4.05 3 20 1.5 0.6  0.20 – 2.4 1 22 1.6 0.78     0.2 – 3.32
Nephthalene (ng/g) 14 83 190        2 – 717 5 8 26 14       7 – 46.9 1 13 34 25        2 – 93
Chrysene (ng/g) 19 120 235        3 – 1030 5 13 36 17       8 – 60 3 16 38 20        3 – 65.1
Fluo-ranthene (ng/g) 21 110 80      10 – 356 4 16 73 35     10 – 128 3 18 85 47      10 – 192

Rock RM: BCR-1
Sm (μg/g) 274 6.7 0.6   5.1 – 10.8 10 264 6.60 0.40    5.1 – 7.72 10 264 6.6 0.4 ---
Sm (μg/g) * 24 250 6.61 0.35    5.5 – 7.55 --- --- --- --- ---
Nd (μg/g) 242 29.6 4.2     11 – 50.9 22 220 29.1 1.9     22 – 35 11 231 29 2 ---
Nd (μg/g) * 34 208 29.1 1.6     25 – 34 --- --- --- --- ---
143Nd/144Nd 102 0.512646 0.000031 0.512566 –

0.512732
0 102 0.512646 0.000031 0.512566 –

0.512732
9 93 512.64 ? 0.03 ? ---

Table 4. Comparison of our multiple-test method (15 tests with 33 test variants) with the box and whisker plot and “two standard deviation” methods 
using concentrations of organochlorine pesticides and petroleum hydrocarbons in a sediment RM (IAEA-408; Villeneuve et al., 1999; see Table A61 for 
individual data) and Sm, Nd and 143Nd/144Nd in a rock RM (BCR-1 from U.S.G.S.; Gladney et al., 1990; see Tables A62-A64 for individual data).

n: number of data; x: mean; s: standard deviation; R: range; o: number of discordant outliers detected by a given method; the subscripts in, f and l refer 
to, respectively, the initial, fi nal (after applying all discordance tests listed in Table 1; this work), and the box-and-whisker plot method for IAEA-408 
(literature, Villeneuve et al., 2002) or the two standard deviation method for BCR-1 (literature, Gladney et al., 1990); the difference between nin and nf 
gives the number of discordant outliers detected by the discordancy tests (see Table 1 for these tests); similarly, the difference between nin and nl gives 
the number of discordant outliers detected by the box-and-whisker plot method (Villeneuve et al., 1999) for IAEA-408 or by the two standard deviation 
method (Gladney et al., 1990). Sm and Nd data in BCR-1 were processed without consideration of the analytical methods. *: The rows marked by an 
asterisk report the statistical results obtained by processing for outliers the data from individual method groups, applying ANOVA test to isolate the data 
from a method group that are signifi cantly different from the remaining groups, combining the remaining data, and then performing once again the outlier 
tests to this combined dataset before computing the fi nal statistical parameters. ?: For the values 512.64 and 0.03 (from Gladney et al., 1990), identifi ed by 
the ? mark in the 143Nd/144Nd row, it is not clear if these values should be 0.51264 and 0.00003, respectively. The nine outliers detected by these authors 
are also erroneously done (see the text of the present paper for an explanation for this error in the original reference Gladney et al., 1990). 
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sively used four decades ago because it was recommended 
as the RM for all studies of lunar rocks, i.e., researchers 
reporting data on lunar rocks had to evaluate their data 
quality by reporting the analysis of this particular RM. 
Since then, this RM has been widely used in geochemical 
laboratories, including isotope laboratories; most Nd isotope 
studies, even today, report 143Nd/144Nd in this RM. However, 
because BCR-1 is no longer available for distribution by the 
U.S.G.S., it is now replaced by BCR-2 (a sample collected 
at the same site as BCR-1).

The individual data for BCR-1 for Sm, Nd, and 
143Nd/144Nd were compiled from Gladney et al. (1990) and 
are presented in supplementary Tables A62, A63, and A64, 
respectively. No attempt was made to complement them 
with more recent data on this widely used RM because our 
main aim was to compare the performance of the multiple-
test method with the “two standard deviation” (2s) method 
used by Gladney et al. (1990) to process their compiled 
data. Although Gladney et al. (1990) is a relatively old 
compilation reference, this is the latest one available on this 
particular RM (BCR-1) in published literature.

The results of the application of the multiple-test 
method, along with those from the 2s method, are also 
summarized in Table 4. For Sm, the same number (10) of 
outliers were detected by both methods (multiple-test versus 
2s) whereas for Nd the multiple-test method detected more 
outliers (22) than the 2s method (11). However, note that 
the multiple-test method was applied at the strict confi dence 
level of 99% (and not at the less strict level of 95%, which 
would, in theory, correspond to the 2s method, and is likely 
to detect more outliers than the 99% level).

Nevertheless, the statistically correct procedure for 
applying discordancy tests to such analytical datasets (e.g., 
Sm and Nd data obtained by different types of analytical 
methods) would be to: (i) construct statistical samples 
for each method-group and process them separately for 
outliers using the multiple-test method; (ii) apply ANOVA 
(“ANalysis Of VAriance”) test to decipher any statistically 
signifi cant differences among different method-groups, and 
isolate a particular group if signifi cantly different from the 
remaining ones at a predetermined confi dence level; (iii) 
combine the data from different method-groups showing no 
signifi cant differences and process them again for possible 
outliers; and (iv) calculate the fi nal statistical parameters 
from the normally distributed fi nal data. We suggest that 
ANOVA be applied at the strict confi dence level of 99% (see 
Verma, 2005, for the respective tabulated critical values). 
The results from such a statistically correct procedure are 
also presented for Sm and Nd in rows marked by an asterisk 
(*) in Table 4. Gladney et al. (1990) did not present such 
method group-based results for their 2s method although 
they did so for individual techniques. A clear advantage of 
the multiple-test method as compared to the 2s method is 
observed for detecting outlying observations for both Sm 
and Nd concentration data if we compare our results (see 
rows marked by an asterisk in Table 4) with the results of 

“all-groups” presented by Gladney et al. (1990). 
We applied the F-test and Student-t test to the two 

sets of Sm and Nd concentration data in order to evaluate if 
there were signifi cant differences between the fi nal results 
obtained by the multiple-test method and the 2s method 
(Table 4). Signifi cant differences (at 95% confi dence level 
for both Sm and Nd, and even at 99% confi dence level 
for Nd) in standard deviation or variance were observed 
between these two sets of data when statistically correct 
procedure involving method groups was used for the mul-
tiple-test method (see rows marked by an asterisk in Table 
4). Variance estimates of Sm and Nd data processed by the 
multiple-test method were signifi cantly lower than those 
obtained by the 2s method. Such results will have important 
implications for instrumental calibrations (using weighted 
regression techniques such as those used by Guevara et 
al., 2005) and data quality assessments (using signifi cance 
tests). More details can be found in Verma (2005). The 
comparison of the Nd isotope data is discussed below. 

First of all, it is very important to note that for 143Nd/
144Nd from California Institute of Technology (CalTec)-type 
laboratories that normalize, during data acquisition, the 
Nd isotopic composition to 148Nd/144Nd = 0.243082 (see 
DePaolo and Wasserburg, 1976, for details on CalTec-type 
laboratories), the data have to be converted according to the 
following Equation (1), in order to make them consistent 
with the numerous laboratories around the world that are 
Lamont-type and use for normalization 146Nd/144Nd = 0.7219 
(see O’Nions et al., 1977, for more details on Lamont-type 
laboratories).

﴾143Nd/144Nd﴿Lamont = 0.512638 ﴾143Nd/144Nd﴿CalTec     (1)
                     

0.511836

Almost concurrently with the CalTec and Lamont 
laboratories, Richard et al. (1976) from the University of 
Paris also discovered the utility of the Sm-Nd isotope sys-
tematics in Earth Sciences, but they used 143Nd/146Nd instead 
of 143Nd/144Nd to show the usefulness of their work. 

The existence of two types of laboratories was prob-
ably one of the main reasons, among others, why the CalTec 
researchers introduced the εNd notation (for the defi nition of 
εNd, see DePaolo and Wasserburg, 1976, 1977). Although the 
actual values of 143Nd/144Nd from these two different types 
of laboratories are drastically different (see the nine lower 
values in the compilation by Gladney et al., 1990, that are 
totally distinct from the rest of the compiled data; these val-
ues are identifi ed by an asterisk and listed in Table A64 after 
their conversion according to Equation (1) and therefore, 
do not signifi cantly differ from the rest of the data), the use 
of εNd makes the Nd isotope data from these two types of 
laboratories directly comparable and fully consistent. It has 
so happened that the Lamont-type laboratories have become 
much more numerous than the CalTec-type laboratories 
(for example, see the compilation by Gladney et al., 1990, 
in which only nine values, out of a total of 102, were from 
the CalTec-type laboratories; see also Table A64 in which 



Critical values for 33 discordancy test variants for outliers in normal samples up to sizes 1000 93

CalTec-type data are identifi ed by an asterisk). 
This essential conversion for handling 143Nd/144Nd 

from these two types of laboratories was not recognized by 
Gladney et al. (1990) as a requirement to statistically process 
Nd isotopic data, which resulted in erroneous processing 
of the isotope data (Table 4). Thus, their 2s method should 
have certainly, but erroneously, rejected the CalTec-type 
data (nine data; see Table 4) as outliers although this was not 
clearly specifi ed by these authors. The multiple-test method, 
on the other hand, showed that no outlier is present in this 
dataset at the strict confi dence level of 99%.

Verma and Quiroz-Ruiz (2006b) extensively com-
mented on the shortcomings of the 2s method and used 
a rock RM peridotite JP-1 from Japan to show that just 
one multiple-outlier test N3 in its three variants (k=2,3,4) 
applied at 95% confi dence level, performed better than 
the 2s method for detecting outliers. Here, using different 
datasets (Sm, Nd and 143Nd/144Nd in BCR-1), we conclude 
that the multiple-test method exemplified in this work 
can be advantageously used in future to arrive at the fi nal 
statistical parameters in such interlaboratory studies and 
the probably statistically erroneous 2s method should be 
abandoned. Such outlier methods based on “fi xed” multiples 
of standard deviation have also been recently criticized by 
Hayes et al. (2007).

Example 3. Other examples of outlier tests applicable in 
Earth Sciences

We now briefl y comment on the need of using the 
above multiple-test method in numerous geoscience studies. 
Verma and Quiroz-Ruiz (2006b) already applied the multi-
ple-test method to oxygen isotope data for the Los Azufres 
hydrothermal system reported by Torres-Alvarado (2002). 
They also pointed out other studies where the multiple-test 
method would be useful. 

Similarly, this multiple-test method with the new 
critical values can be successfully applied to process and 
better interpret: (i) effective weight, variation index and 
other groundwater data discussed by El-Naqa et al. (2006); 
(ii) univariate and bivariate data of ammonites documented 
by López-Palomino et al. (2006), the latter (bivariate) data 
using studentized residuals from the regression; (iii) bi-
variate data for naturally fractured reservoirs from Mexico 
presented by Miranda-Martínez et al. (2006); (iv) data ac-
quisition stage of mass spectrometric instrumentation used 
for 40Ar-39Ar (Molina-Garza and Ortega-Rivera, 2006) or 
K-Ar geochronology (Solé et al., 2007), including Rb-Sr, 
Pb-Pb, Sm-Nd, and Re-Os geochronology or isotope geol-
ogy (see for example, Wang et al., 1998; Dougherty-Page 
and Bartlett, 1999, who used just one Dixon test); (v) 
geochemical data on granitic xenoliths and rocks presented 
and compiled by Corona-Chávez et al. (2006); (vi) micro-
probe data recently reported by Colombo et al. (2007); (vii) 
chemical data of inactive tailings from the Santa Barbara 
mineral zone, Chihuahua, documented by Gutiérrez-Ruiz 
et al. (2007); (viii) chemical data for recent and historic 

tailings of a Pb-Zn-Ag skarn deposit analyzed by Méndez-
Ortiz et al. (2007); (ix) geochemical and stable isotope data 
for sedimentary rocks obtained by Nagarajan et al. (2007, 
in press); (x) cation and anion composition data for under-
ground water reported by Ramos-Leal et al. (2007); (xi) 
geotechnical variables for oil prospect exploration decision 
making discussed by Salleh et al. (2007); (xii) major and 
trace element data for metabasic volcanic rocks presented 
by Shekhawat et al. (2007) and for topaz-bearing rhyolites 
documented by Rodríguez-Ríos et al. (2007); and (xiii) 
mineral composition data for metagabbroic rocks reported 
by Cruz-Gámez et al. (2007). 

We note that the discordant outliers, if present, are 
of much value to further understand the geological proc-
esses provided they are not caused solely by analytical 
uncertainty. The remaining normally distributed data (after 
eliminating outlying observations as judged by the applied 
discordancy tests) can then be used for correctly calculat-
ing the central tendency or location (mean) and dispersion 
or scale (standard deviation) parameters (see Verma, 2005, 
for more details). 

As an example of the application of multiple-test 
method, we can mention that Colombo et al. (2007) applied 
fi ve single-outlier tests (N1, N2, N7, N8 and N9, with their 
seven test variants) to ascertain the absence of outliers in 
their geochemical data before calculating the mean and 
standard deviation values. We suggest that for small datasets 
such as those mentioned in this section, the multiple-test 
method could consist of applying consecutively all nine 
single-outlier tests (N1, N2, N4–k=1, N7-N10, N14, and 
N15), with their 13 test variants, to detect possible outlier(s). 
The multiple-outlier tests (k=2 to k=4 types), with 20 test 
variants, could additionally be used for larger datasets such 
as those obtained in interlaboratory studies of RMs.

In summary, therefore, we emphasize that the multi-
ple-test method proposed by Verma (1997) and exempli-
fi ed in our paper is a recommended procedure to process 
experimental data under the assumption that the data are 
drawn from a normal distribution and departure from this 
assumption due to any contamination or presence of dis-
cordant outliers can be properly handled by tests N1 to N15 
(all 15 tests with their 33 variants, or only those selected 
for this purpose). 

APPLICABILITY AND PERFORMANCE OF 
DISCORDANCY TESTS

There has been considerable confusion regarding the 
applicability of discordarcy tests. Miller and Miller (2000, 
p. 54-57), among others, have expressed the view that Dixon 
tests are applicable to only small data sets, without actu-
ally providing any reasons for this limitation. Surprisingly, 
these authors intuitively refer to Dixon tests as a Dixon test 
(Dixon´s Q test). Dixon´s Q test (N7 by Dixon, 1951; N8 by 
King, 1953; see Table 1) is said to be “valid” for small n = 
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3 to 7 (Miller and Miller, 2000, p. 54). Unfortunately, this 
kind of view has plagued the literature in chemistry. Dixon 
(1951) presented approximate critical values independently 
for all tests and for n up to 30. Then, why should Dixon tests 
be limited to n = 3 to 7? It is true that Dixon tests are espe-
cially vulnerable to possible masking effects (Dixon, 1950; 
Barnett and Lewis, 1994), but this refers to their power and 
not their applicability. In fact, the power of tests as inferred 
by Dixon (1950) could have been seriously affected by the 
approximate nature of the critical values by Dixon (1951) 
– see the large differences between these values and those 
simulated by Verma and Quiroz-Ruiz (2006a), or those 
presented in the present work. This performance evaluation 
(Dixon, 1950) should also be considered rather incomplete 
from the modern statistical point of view presented by 
Barnett and Lewis (1994) and Hayes and Kinsella (2003). 
Therefore, the performance of Dixon and other tests should 
await further detailed work, which is already in progress by 
Verma and collaborators. 

Nevertheless, statisticians specializing in outlier 
theory (e.g., Barnett and Lewis, 1994, in their authoritative 
book, p. 218-234) have pointed out no such “applicability” 
limitations of single-outlier tests, including Dixon tests, the 
only limitation being the availability of critical values (see 
e.g., Verma, 1997; Velasco et al., 2000; Verma and Quiroz-
Ruiz, 2006a, 2006b) and the effi ciency of discordancy tests. 
Barnett and Lewis (1994, p. 126) have, in fact, suggested 
that single-outlier tests should be classifi ed as consecutive 
tests, and therefore, these tests can be used for identifying 
multiple (i.e., more than one) outliers (see p. 125-127 in 
Barnett and Lewis, 1994). The null and alternate hypotheses 
can thus be repeatedly postulated to test a given dataset for 
several outliers using single-outlier tests in a consecutive 
way. Of course, multiple-outlier tests or block procedures 
(see Barnett and Lewis, 1994) could be more suited for large 
datasets, but more work is needed to quantitatively evaluate 
the performance of all single- and multiple-outlier tests. For 
this reason we believe that new, precise and accurate critical 
values should be generated not only for small n but also for 
very large n, as has been accomplished in the present work. 
We plan to address these questions of utmost importance in 
our future work; the fi rst paper in this direction is already 
in preparation by S.P. Verma, L. Díaz-González, and R. 
González-Ramírez. 

The performance of a discordancy test is an important 
“quality” factor that should be properly evaluated (Barnett 
and Lewis, 1994; Velasco and Verma, 1998; Velasco et 
al., 2000; Hayes and Kinsella, 2003; Efstathiou, 2006). 
During the last decade, Barnett and Lewis (1994, p. 131) 
pointed out that much remains to be done in the area of 
performance of the various available procedures in the 
presence of outliers. Even today, this statement seems to be 
true. Thus, appropriate statistical procedures for handling
and interpretation of experimental data should be the focus 
of future work. Masking and swamping effects are also im-
portant factors that require special attention and evaluation 

(Barnett and Lewis, 1994). Finally, because the performance 
of discordancy tests is not properly known at present al-
though some empirical results were reported by Velasco 
and Verma (1998) and Velasco et al. (2000). Verma and 
collaborators (Verma, 1997, 1998, 2005; Verma et al., 1998; 
Guevara et al., 2001; Velasco-Tapia et al., 2001; Verma and 
Quiroz-Ruiz, 2006a, 2006b; this work) have proposed and 
practiced the use of the multiple-test method and not just 
some selected test(s). The computation of new, precise and 
accurate critical values as carried out in the present work 
should facilitate in future to empirically better evaluate the 
performance of discordancy tests than attempted by Velasco 
et al. (2000). 

CONCLUSIONS

We have used our established and well-tested Monte 
Carlo-type simulation procedure for generating new, precise 
and accurate critical values for 15 discordancy tests with 33 
test variants for sample sizes up to 1000. For the fi rst time 
in the published literature, these critical values (x), along 
with their individual uncertainty estimates (sex) as well as 
new interpolation equations obtained by ANN, are also 
tabulated. These new critical values will be very useful in 
many diverse fi elds of science and engineering, including 
in quality control in Earth Sciences. Specifi c examples are 
presented to highlight the use of these new critical values 
for quality control. The multiple-test method outlined in 
the present work seems to perform better than both the 
box-and-whisker plot and the “two standard deviation” (2s) 
methods used for processing interlaboratory data on RMs 
for quality control purposes. Much work is still needed to 
evaluate the performance of discordancy tests. The new 
critical values for all samples sizes up to 1000 simulated 
and interpolated in this work should certainly facilitate the 
performance evaluation.
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