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ABSTRACT

Lahars are destructive volcanic debris flows, composed of water and pyroclastic material, ca-
pable of traveling long distances at high velocities. Modelling their dynamics is critical for hazard
assessment and risk mitigation, yet it remains complex due to factors such as parameter uncertainty,
limited calibration data, and variable terrain topography. Current modelling approaches range from
empirical methods to advanced depth-averaged numerical simulations, where flow resistance is
typically represented through rheological models. Common formulations include the Manning
equation, Voellmy friction model, and Bingham plastic rheology, each capturing different aspects of
non-Newtonian flow behaviour. This study evaluates the performance of several rheological models
in reconstructing the 2001 lahar event at Popocatépetl volcano (Mexico) using the enhanced non-
Newtonian module of the Iber hydrodynamic modelling tool (Iber-NNF). Results show that model
choice significantly affects simulation accuracy. Manning-like models performed poorly, high-
lighting the limitations of velocity-dependent resistance terms in capturing static flow behaviour.

Keywords: non-Newtonian flows; Popocatépetl volcano; hazard assessment.

RESUMEN

Los lahares son flujos destructivos ligados a dreas volcdnicas, compuestos de agua y material
pirocldstico, capaces de recorrer largas distancias a altas velocidades. Simular su dindmica es crucial
para la evaluacion de peligros y la mitigacién de riesgos; sin embargo, esto sigue siendo complejo
debido a factores tales como la incertidumbre de los pardmetros, la escasez de datos de calibracion
y la variabilidad topogrdfica del terreno. Los enfoques actuales para su evaluacion abarcan desde
métodos empiricos hasta simulaciones numéricas avanzadas promediadas en profundidad, donde la
resistencia al flujo se representa tipicamente mediante modelos reol6gicos. Las formulaciones comunes
incluyen la ecuacién de Manning, el modelo de friccion de Voellmy y la reologia pldstica de Bingham,
cada una de las cuales captura diferentes aspectos del comportamiento del flujo no newtoniano. Este
estudio evalila el rendimiento de varios modelos reolégicos en la reconstruccién del evento de lahar
ocurrido en 2001 en el volcdn Popocatépetl (México) utilizando el médulo no newtoniano mejorado
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de la herramienta de modelado hidrodindmico Iber (Iber-NNF). Los resultados muestran que la
eleccion del modelo afecta significativamente la precision de la simulacion. Los modelos tipo Manning
tuvieron un rendimiento deficiente, lo que pone de relieve las limitaciones de los términos de resistencia
dependiente de la velocidad para capturar el comportamiento estdtico del flujo.

Palabras clave: flujos no newtonianos; volcdn Popocatépetl; gestion del riesgo.

INTRODUCTION

Lahars are a kind of debris flow that occur in volcanic settings,
consisting of a mixture of volcanic fragments and water. These flows
can be highly destructive due to their high velocity, large volume,
and capacity to travel considerable distances downstream from the
releasing area. Consequently, lahar modelling remains a significant
challenge, while it is essential for hazard assessment, risk management,
and the development of effective mitigation strategies (Huggel et
al. 2003; Sheridan et al. 2004; Capra et al. 2004; Darnell et al. 2013;
Caballero and Capra 2014; Woodhouse et al. 2016; Mead and Magill
2017; Guerrero et al. 2019).

Available approaches for lahar simulation range in complexity
from simple empirical models (e.g., Schilling 2014) to advanced
numerical simulation tools (e.g., Haddad et al. 2010). Currently, the
most widely used method involves depth-averaged hydrodynamic
numerical tools, which apply fundamental physical laws to simulate
flow behaviour, incorporating resistance forces through rheological
models.

A variety of rheological models have been proposed to capture
the shear stress—shear rate relationships characteristic of non-
Newtonian flows such as lahars. Among the most commonly used are
the Manning formula and Manning-type expressions, which include
dilatant and viscous adaptations (Vignaux and Weir 1990; Barberi et
al. 1992; Costa 1997). The Voellmy friction model (Voellmy 1955) is
also frequently employed, particularly for granular flow simulations
(Pirulli and Sorbino 2008; Schraml et al. 2015), and has been used for
lahar modelling as well (de’ Michieli Vitturi et al. 2019; Franco-Ramos
et al. 2020; Figueroa-Garcia et al. 2021). This model expresses total
flow resistance as the sum of turbulent friction and dry Coulomb-
type friction. Alternatively, the Bingham (1916) rheological model
incorporates both yield and viscous stresses and is widely used for
simulating the dynamic and static behaviour of mudflows (Dent and
Lang 1983; Chen and Lee 2002; Pastor et al. 2014). This model defines a
linear stress—strain relationship with a non-zero yield stress, where the
intercept and slope correspond to the yield and viscous components,
respectively. Other rheological formulations have also been applied
to lahars, including those proposed by O’Brien and Julien (1988) and
Herschel and Bulkley (1926).

Major challenges in lahar modelling using these approaches
include high parameter uncertainty, scarce calibration data, and
difficulties in accurately predicting flow paths in complex terrain
topographies (e.g., Costa 1997, Haddad et al. 2010, Caballero and
Capra 2014, Kheirkhah Gildeh et al. 2021). Particularly for the
rheological models parameters, the values can range widely providing
similar runout distance for different combination of the parameters.

This study aims to evaluate the performance of various rheological
models in reconstructing the 2001 lahar event at Popocatépetl volcano
(Mexico). Simulations were carried out using the non-Newtonian
flow module of the hydrodynamic modelling tool Iber (Bladé et al.
2014a; Sanz-Ramos et al. 2025), which includes the most common
rheological models used in lahar modelling.

STUDY SITE

Lahar-prone area: Huiloac gorge, Popocatépetl volcano

Popocatépetl volcano (Figure 1a), located in the Trans-Mexican
Volcanic Belt (TMVB), is a stratovolcano approximately 70 km
southeast of Mexico City and represents the second-highest peak
in North America (~5400 m a.s.l.). Eruptive events can release and
deposit large amounts of volcanic material, affecting both nearby
slopes and distant lowland areas. In particular, tephra composed of
fine particles such as lapilli and ash, depending on eruption magnitude
and intensity, may promote lahar initiation when remobilized by water
sources such as rainfall or snowmelt.

According to the National Institute of Statistics and Geography of
Mexico (INEGI), one of the most lahar-prone regions on the northern
flank of the Popocatépetl volcano is the Huiloac Gorge (Figure 1b),
which poses a direct threat to nearby populated areas including
Santiago Xalitzintla and San Nicolas de los Ranchos. The most recent
significant lahar in this gorge occurred in 2001, likely initiated during
an eruptive phase by a water input from partial melting of the summit
glacier (Capra et al. 2004). This event exhibited distinctive flow
characteristics influenced by its sand-to-silt particle size distribution
and high water content, traveling approximately 12-13 km from the
glacier source to the final depositional zone (Figure 1b, dashed line).

Data available for the event

Accurate numerical reconstruction of lahar events requires
two primary inputs: high-resolution topographic data to define the
computational domain, and information on the material composition
to appropriately characterize the rheological behaviour during the
dynamic phase of the flow.

For this study, the most recent digital terrain model (DTM)
available from the INEGI was employed. This raster-format DTM
offers a horizontal resolution of 15 m and a mean global vertical Root
Mean Square Error (RMSE) of 4.8 m.

The 2001 lahar was simulated by prescribing a discharge
hydrograph as an inlet boundary condition at the uppermost point
of the computational domain, located at approximately 3600 m a.s.l.
The hydrograph was derived from the interpretation of geophone data
recorded along the Huiloac Gorge (Capra et al. 2004; Mufioz-Salinas
et al. 2007), and is characterized by a peak discharge of 335 m*/s and
a duration of 3 h.

NUMERICAL MODELLING TOOL

Non-Newtonian module of Iber

Iber is a hydrodynamic numerical modelling tool initially
developed for flood hazard and risk assessment (Bladé et al. 2014a,
2014b). Since its release in 2010, its application scope has broadened
significantly to include morphodynamic processes, pollutant and
sediment transport, large wood dynamics, hydrological and soil
erosion modelling, urban drainage systems, and eco-hydraulics (e.g.,
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Ruiz-Villanueva et al. 2014; Cea and Bladé 2015; Sanz-Ramos et al.
2019, 2022; Bladé et al. 2019; Aranda et al. 2021; Olivares-Cerpa et
al. 2022; Innocenti et al. 2023; Costabile et al. 2024).

The tool has recently been enhanced with the incorporation
of a new module, called Iber-NNE which is specifically designed to
simulate non-Newtonian shallow flows. This module was already used
to simulate dense snow avalanches (Sanz-Ramos et al. 2021, 2023a),
mudflows and mine tailings propagation after a dam-break (Sanz-
Ramos et al. 2024a, 2024c) and wood-laden flows (Ruiz-Villanueva
et al. 2019). In these non-Newtonian flows, the resistance forces,
which are typically represented by the Manning or Chezy formulas in
conventional hydraulics, are instead computed through a rheological
model tailored to capture the unique properties of the flow. This
approach allows for a more accurate representation of the dynamic
behaviour of non-Newtonian fluids, where traditional hydraulic
formulas are inadequate.

Iber-NNE like Iber, solves the two-dimensional depth-averaged
shallow water equations (2D-SWE) in a cartesian coordinate system
(Equation (1)):
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where h is the fluid depth, g, and g, are the two components of the
specific discharge, g is the gravitational acceleration, S,, and S, are
the two bottom slope components, and S, and S, are the two friction
slope components of the rheological model.

The 2D-SWE were adapted to simulate non-Newtonian shallow
flows in a global coordinate system in steep slopes (g'= g cos® 0), with
a non-hydrostatic pressure distribution (k,) and using a rheological
model as frictional terms. To achieve this, a particular numerical
scheme was implemented, ensuring the balance among the different
terms of the 2D-SWE and the stop of the fluid according to the
rheological properties of the fluid, even in steep slopes and complex
geometries (Sanz-Ramos et al. 2023a).
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Rheological models

The current version of Iber implements eight rheological models:
Manning, Viscous, Dilatant, Voellmy, Bartelt, Bingham (simplified),
O’Brien-Julien (also called ‘quadratic’) and Herschel-Bulkley. All
of these rheological models have been previously used in lahar
simulations (e.g., Macedonio and Pareschi 1992; Costa 1997; Haddad
et al. 2010; Franco-Ramos et al. 2020; Martinez-Valdés et al. 2023;
Satria et al. 2024), except Bartelt. These models, expressed as friction
slope (S;, which is related to the shear stress as 7 = pgh$)), are described
below:

Manning (Chow 1959): S = l::: @

Viscous (Macedonio and Pareschi 1992): S; = nh:/ (3)

Dilatant (Macedonio and Pareschi 1992):S, = ’;IZV (4)
1 UV

Bingham simplified: S E(WTJ,'F 37] (5)

Voellmy (1955): S =gt ©)
1 _L

Bartelt et al. (2015): S = @[C(l—.u)[l— e ]] (7)

. . ) _ Y Kugv = n*v?
O’Brien and Julien (1988): S; ogh + 8pgh’ + JRE (8)
o
Herschel and Bulkley (1926): S =— (Ty-',-k(l] ] )
pgh h

where the calibration parameters of each rheological model are the
flow density (p), the Manning coefficient (1), the yield stress (z,), the
fluid viscosity (y3), the Coulomb friction coefficient (1), the turbulent
friction coefficient (£), the cohesion (C), a resistance parameter (K),
a consistency parameter (k), and the shear power («).

The Coulomb model, which is often used either independently
or in combination with other rheological models in lahar simulations
(Pitman et al. 2003; Tierz et al. 2017; Kmetyko et al. 2024), can be
represented by the Voellmy model with £ - oo, effectively eliminating
the contribution of the viscous term. Furthermore, the yield slope
term in the simplified Bingham model is modified by w, a factor that
accommodates the different formulations found in the literature for
this parameter (Chen and Lee 2002; Pitman et al. 2003; Sanz-Ramos
et al. 2024a). The Bartelt rheological model was excluded from this
study, as it was originally developed to account for cohesion forces in
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Figure 1. (a) Location of Popocatépetl volcano in the TMVB (EPSG: 4326). (b) Probability lahar maps (high: red; moderate: orange; low: green) according to Martin
Del Pozzo et al. (2017) and lahar 2001 runout within Huiloac Gorge (dashed line) according to Capra et al. (2004) (EPSG: 32614).
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snow avalanche modelling (Bartelt ef al. 2015) in conjunction with the
Voellmy model, although it may also be used independently.

Model setup

The study area covered 1774 ha, with elevations ranging from
3600 to 2500 m a.s.l. The domain was discretized using a mesh of
180000 triangular elements, each with an average side length of 15 m,
corresponding to the resolution of the digital terrain model (DTM).
The maximum simulation time was set to five hours.

Following the methodology outlined by Caballero and Capra
(2014), the hydrograph was applied at the highest elevation, with
a fluid density of 1740 kg/m>. A pressure factor (k,) of 1 was used,
as the lahar had already been triggered and fluidized, and thus the
hydrograph was employed rather than an initial condition.

The rheological model parameters were adjusted (Table 1) to
replicate the maximum runout distance of the 2001 Popocatépetl
lahar, as estimated by Capra et al. (2004). Parameters affecting the
velocity-dependent terms of the rheological model were assumed to
be homogeneous across the domain, although Iber allows for spatial
distribution through manual or raster assignment. Other parameters,
primarily related to the physical properties of the fluid, were treated
as constant values throughout the simulation.

RESULTS

General behaviour and flood extent

Figure 2 illustrates, through the map of maximum flow depths, the
maximum extent of the lahar according to the parameters of the five
rheological models tested. It is worth noticing that the Manning model
was used as a representative formula for the Viscous and Dilatant
models, as their expressions are derived from Manning-like formulas,
which are expected to produce similar hydrodynamic behaviour.

Rheological models that implement only velocity-dependent
terms, such as the Manning-like models, were unable to halt the
fluid flow, either on flat or steep slopes. This is evident in Figure
2a, where the flood extent is larger—similar to hydraulic modelling
results—and the fluid continues to flow downstream and leaving the
model domain. Several branches emerged due to high inertial terms,
causing the fluid to overtop the gorge banks, which partially flooded
adjacent gorges and streams. Maximum flow depths up to 5 m were
obtained at the upstream sections and the maximum flood extent was
greater than 718 ha.

The remaining rheological models displayed similar behaviour
in terms of flooded area, with runouts consistent with observations
(Figure 2, red-orange triangle). The Voellmy model (Figure 2b)
exhibited the second-largest flood extension (149 ha), along with
a significant deposition area with more than 5 m depth on the left
floodplain, which formed when the gorge width expanded in the
mid-lower stream. This flooded area is similar to those identified
as ‘high hazard zone’ (Martin Del Pozzo et al. 2017), predominantly
extending to the north (Figure 2, yellow polygon).

The results from the Bingham, O’Brien-Julien, and Herschel-
Bulkley models were generally comparable. The flood extent of

the Bingham model was smaller than the others (65 ha), yet all
three models indicated similar maximum depths along the gorge
(~4 m), with a tendency to flood the area just before the gorge
widens in the mid-stream section. As with the Voellmy model, the
flow predominantly affected the northern portion of the mid-lower
stream. Results from O’Brien-Julien and Herschel-Bulkley were almost
identical, with a flood extent of 74 ha and 88 ha and maximum flow
depths of 4.0 and 4.8 m, respectively.

Time arrival and flow velocity

The simulated arrival time to the farthest deposition point of the
2001 Popocatépetl lahar by the different rheological models varied
slightly. The Manning model arrived in less than 0:30 hours, even
using a Manning coefficient of 1 s/m'”?. Voellmy and Bingham models
exhibited the slowest front velocity, with an arrival time between 3:40
and 3:50 hours. In contrast, the Herschel-Bulkley model displayed
the fastest propagation, with an arrival time of 2:50-3:00 hours. The
O’Brien-Julien model showed intermediate arrival times, ranging
from 3:00 to 3:10 hours. Notably, once the lahar reached the farthest
deposition point, it ceased movement across all rheological models,
maintaining a non-horizontal free surface. This behaviour was not
obtained with the Manning rheological model, as the lahar continued
flowing downstream reaching the limits of the model.

Results of the simulated velocity were compared to the lahar
velocity estimated by Munoz-Salinas et al. (2007) using the superele-
vation technique at the mid-lower part of the runout area. Generally,
Iber-NNF correctly captured the estimated velocity at the nine points
evaluated (Table 2). The Manning model generally underestimated the
maximum velocity at the control points since the flow was spilled over
a larger area, i.e,, the flow did not concentrate in the gorge. Voellmy
model presented larger velocities in all sections, in accordance with
the fastest arrival time, while the maximum runout distance was
well captured. This behaviour was caused by the lower contribution
of the Coulomb term in resistance forces. Bingham model provided
moderate flow velocities, similar to those presented by Munoz-Salinas.
Finally, O’Brien-Julien and Herschel-Bulkley presented the slowest
flow velocities in all sections, in agreement with the arrival time.

DISCUSSION

Rheological models and parameters range

The parameters of the rheological model are the primary
factors governing energy dissipation resulting from flow-boundary
interactions, as flow turbulence is typically not considered in lahar
simulations using SWE-based numerical tools. Therefore, selecting
appropriate values for these parameters is crucial for obtaining reliable
results.

Table 3 presents a comparison between the parameters used in
the simulations and the minimum and maximum values found in the
literature for lahar and debris flow modelling. In general, the values
of the parameters of the rheological models tested in the numerical
reconstruction of the 2001 Popocatépetl lahar are within the typical
range used in lahar simulations. However, some values of the O’Brien-

Table 1. Values of the parameters of the rheological models used to simulate the Popocatépetl lahar.

Manning Voellmy Bingham O’Brien-Julien Herschel-Bulkley
n ¢ U T, Us T, Us K n T, k o
(s/m'?)  (m/s?) (-) (Pa (Pa-s) (Pa) (Pa-s) (-) (s/m"?) (Pa) (Pa-s®) )
1 2000 0.05 600 500 700 5 2000 0.06 600 1500 0.5
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Depth (m)
- 5.00

Figure 2. Maximum lahar extension according to the parameters of the rheological model of Table 1: (a) Manning, (b) Voellmy, (c) Bingham, (d) O’Brien-Julien,
and (e) Herschel-Bulkley. High lahar hazard zone according to Martin Del Pozzo et al. (2017): yellow polygon. Symbol § represents the farthest deposition point

of the 2001 Popocatépetl lahar (548315,2109126; EPSG: 32614).

Julien and Herschel-Bulkley models, particularly those related to the
non-velocity-dependent term and the factor multiplying the velocity
term, deviate from those commonly used. The values proposed for
these models resulted in lower resistance, causing the flow to exit the
model domain, similar to the behaviour observed with Manning-like
models.

For the Manning and Voellmy models, numerous handbooks
and guidelines provide recommended values, particularly in hydraulic
engineering (Arcement and Schneider 1989) and in snow avalanches
modelling (Buser and Frutiger 1980; Bakkehei et al. 1981; Brugnot
2000), where the flow behaves similarly to non-Newtonian shallow
flow. Although Manning-like models were unable to halt fluid
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movement over irregular and steep slopes, they continue to be used in
lahar modelling (e.g., Syarifuddin et al. 2018; Vera et al. 2019; Bonasia
et al. 2022) using values of # out of the common range for hydraulics.
The values used in the current research emphasise the fact that the
resistance forces computed through rheological models are parameters
to calibrate, as well as the Manning coefficient in hydraulics.

Recently, the Voellmy model has emerged as an alternative to
other rheological models for lahar simulations (e.g., Franco-Ramos et
al. 2020; Figueroa-Garcia et al. 2021). The Coulomb friction coefficient
(¢) demonstrated to be highly sensitive to variations in this case study
due to topographic irregularities within the gorge, such as sinks and
barriers (Mufoz-Salinas et al. 2008), which tend to accumulate the
flow for mid-high values of y (a parameter directly related to the
basal friction angle). Values greater than 0.15 notably increase the
basal friction and, thus, the total resistance forces. In such cases, the
fluid tends to accumulate in the upstream area without reaching the
deposition area. However, lower values are physically possible since
this parameter is directly related to the angle of repose, which it can
be less than 0.15 for sediment-laden flows with high concentrations
of water (e.g., mudflows). When using the fill sinks” option in GIS
software or Iber (see next section), the topography is notably modified,
and consequently, the rheological parameters should also be adjusted
to align with the observed results, particularly increasing y in such
cases. On the other hand, the turbulent friction coefficient (&) used is
within the typical values found in the literature. It is not a physically
based parameter, but it can be related to the Chezy coefficient (Ruiz-
Villanueva et al. 2019; Sanz-Ramos et al. 2023b).

The Bingham model has proven useful for simulating mudflows
under low shear rates, where both yield and viscous stresses depend
on the cohesion of fine sediments, as well as for simulating debris
flows (Dent and Lang 1982; O’Brien et al. 1993; Cordonnier et al.
2016; Msheik 2020; Thouret et al. 2020; Kheirkhah Gildeh et al. 2021).
However, there are few applications of this model for lahar simulations
as the sole rheological model (Haddad et al. 2010, 2016). Table 3 also
shows the typical values used in debris flow modelling, highlighting
that the value of the yield stress (7,) used is close to the minimum
value commonly used for debris flows.

The O’Brien-Julien model incorporates elements from previous
rheological models into a quadratic equation for velocity-dependent
terms. It has been widely applied in lahar modelling due to the
availability of a parameter database for its selection (O’Brien and
Julien 1988). Nevertheless, these parameters were derived initially
for mudflows with specific particle sizes and characteristics (e.g., silts
and clays) in laboratory settings. As such, they may not be optimal
for representing the properties of lahar materials and could require
adjustment to achieve the best fit with field observations. The values
of the yield stress (7,) and the fluid viscosity (u) used in this study
are out of the standard range used for lahar modelling, but within the

range for debris flow modelling. The performance of this rheological
model in Iber-NNF was proven to be adequate for mine-tailing
flow propagation (Sanz-Ramos et al. 2024a). So, assuming a flow
depth and velocity of 1 m and 1 m/s, we can demonstrate that the
contribution of these two parameters to the friction slope is very low
(S/(1;» ps) < 0.005, while S{n) > 0.15), even for the maximum values
commonly used.

The influence of topography resolution on the simulation extent

The reconstruction of the 2001 Popocatépetl lahar was carried out
using a Digital Terrain Model (DTM) with a 15 m cell size. However,
other XY resolutions were also available and tested, including 5, 30, 60,
90, and 120 m cell size. The event was re-simulated, maintaining the
mesh resolution and rheological parameters from Table 1, but using
different topographical data. For sake of simplicity, the description of
this analysis will focus here on the Bingham model, although similar
behaviour was obtained with the other rheological models.

Figure 3 shows the maximum extent of the lahar using DTMs
with varying resolutions. Coarser DTMs, such as those with 120 m
(Figure 3a) and 90 m (Figure 3b) cell size, provided the poorest results.
In these cases, the gorge geometry appeared smoother, leading to less
accurate representation of the flow path. The fluid tended to continue
flowing in a straight line, as the gorge was not sufficiently defined.
From DTM:s of 60 (Figure 3c) to 30 m (Figure 3d) cell size, the lahar
flow developed branches, more closely matching the ‘high hazard
zon€ (yellow polygon). However, the runout was slightly shorter than
observed (~600-800 m).

The use of 5 m cell size DTM provided mixed results. The
original DTM (Figure 3e), without using the ‘fill sinks’ option of Iber
(Sanz-Ramos et al. 2020), resulted in a much smaller runout distance
than using the enhanced DTM with the ‘fill sinks’ option (Figure 3f),
which exceeded in ~1000 m the detention point observed by Capra
et al. (2004). Despite the 5 m cell size DTM should provide a more
detailed channel information, the use of a coarser mesh (15 m side
size) generated numerical sinks and barriers that prevented the flow
form flowing downstream.

Figure 3 also presents the estimated extent of ‘high hazard zone’
in Popocatépetl (yellow polygons) presented by Martin Del Pozzo et
al. (2017). While the topographical data and methodology used to
generate these hazard maps differ from those applied in this study,
the results of the numerical model are consistent with the rheological
model and the observed dynamics of the lahar flow. Overall, the
simulated flood-prone areas align with the extent of the hazard maps
for low-probability lahars. It is important to note that the hazard map
for the Huiloac Gorge overlaps with another stream originating from
the south. Therefore, lahar modelling should account for the potential
triggering of concurrent lahars from different regions that converge
at this location.

Table 2. Comparison between the flow velocity estimated by Mufioz-Salinas et al. (2007) and the simulated velocity

according to each rheological model tested.

X Y  Muiioz-Salinas Manning Voellmy Bingham  O'Brien-Julien Herschel-Bulkley
i [V
(m/s) (m/s)
541045 2108914 4.9 1.5 83 4.3 3.6 2.1
541635 2109173 13.8 13.5 13.5 14.8 8.1 11.8
542002 2109317 4.7 0.9 9.2 4.7 4.0 2.1
542821 2109711 6.3 2.7 10.0 4.5 3.4 2.1
543408 2109474 1.6 1.1 8.5 1.4 1.6 1.3
543543 2109724 1.5 2.5 3.9 1.3 1.5 1.4
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Table 3. Values of the parameters of the rheological model used in Iber-NNF and range for lahar modelling.

Model Variable Value Range for lahars Range for debris
(units) Min. Max. Min. Max.
Manning n (s/m'?) 1 0.15 1.09 0.1 1
Voellmy & (m/s?) 1500 300 5000 10 600
u (-) 0.05 0.15 0.50 0.1 0.55
Bingham T, (Pa) 600 60 600 750 3500
s (Pass) 500 50 500 0.4 3200
O’Brien-Julien 7, (Pa) 700 0.192 35.7 700 1500
Us (Pa-s) 5 0.0137 0.144 5 35
K(-) 2000 400 2000 24 2000
n (s/m'?) 0.06 0.065 0.167 0.05 0.20
C,(-) 0.45 0.20 0.66 0.3 0.6
Fy e (5) 0.9 0.9 0.9 0.5 2
Herschel-Bulkley T, (Pa) 600 0.0239* 0.0239*
k (Pa-s®) 1500 2.76* 2.76*
a(-) 0.5 0.5* 0.5*

)

*Data provided without units in Satria ef al. (2024).

Depth (m)
. 5.00

4.50

2.50
2.00

1.50

0.50

0.00

Figure 3. Variations on the maximum lahar extension according the DTM used: (a) 120 m cell size, (b) 90 m cell size, (c) 60 m cell size, (d) 30 m cell size, (¢) 5m
cell size without ‘fill sinks, and (f) 5 m cell size with ‘il sinks. High lahar hazard according to Martin Del Pozzo et al. (2017): yellow polygon.

Performance of the numerical tool

The results of the 2001 lahar simulation using Iber are consistent
with the selected rheological model parameters and the employed
topographical data. With the exception of the Manning model—
which incorporates only a velocity-dependent resistance term—all
simulations resulted in flow cessation and deposition over irregular

terrain with a non-horizontal free surface. The model successfully
reproduced the observed runout of the 2001 lahar using several
rheological models, underscoring the importance of model selection
and the fact that different parameter sets—and even different
rheological models—can yield comparable outcomes (Sanz-Ramos
et al. 2023b).
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The computational time of each simulation was completed in less
than 10 minutes, attributable to the relatively coarse mesh (mean side
length of 15 m), which allowed for larger time steps while satisfying the
Courant-Friedrichs-Lewy condition (Courant et al. 1967). Notably,
simulations using the Manning model required greater computational
time due to high velocities and increased wetted elements, which elevate
computational demands. Although runtimes were modest for the 2001
Popocatépetl lahar case, adopting finer topographic data and mesh
resolution would significantly increase computation time. To address
this, future versions of Iber-NNF are planned to support GPU-based
parallel computing—similar to the sediment transport and habitat
modules—offering speed-ups of over 100 times (Sanz-Ramos et al.
2023c, 2024b; Dehghan-Souraki et al. 2024; Lopez-Gomez et al. 2024).

CONCLUSIONS

Numerical modelling of lahars presents significant challenges
due to their complex flow behaviour and the inherent difficulties
associated with field data acquisition. Nevertheless, accurate modelling
is essential for lahar hazard and risk assessment, as well as to develop
of effective mitigation strategies. In this study, the hydrodynamic
modelling tool Iber—specifically its non-Newtonian module, Iber-
NNF—was employed to simulate the 2001 lahar event at Popocatépetl
volcano using different rheological models. The results highlight the
critical role of rheological model selection in accurately capturing both
the dynamic and depositional (static) phases of lahar flow. Among the
models tested, Manning-like formulations (Manning, Viscous, and
Dilatant) exhibited the weakest performance, as they rely solely on
velocity-dependent resistance terms that act only during flow motion,
failing to adequately represent flow cessation and deposition.
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