Pore structure of surficial samples from Los Humeros volcanic complex, revealed from scanning electron microscopy and X-ray microtomography images
PDF (Español (España))
HTML (Español (España))

Keywords

permeability
Los Humeros Volcanic Complex
Mexican geothermal fields
volcanic rocks
SEM
micro-CT
porosity

How to Cite

Vega, S., de la Rosa-Maldonado, J., Reyna-Bustos , I., & Carrasco-Núñez, G. (2025). Pore structure of surficial samples from Los Humeros volcanic complex, revealed from scanning electron microscopy and X-ray microtomography images . Revista Mexicana De Ciencias Geológicas, 42(2), 73–92. https://doi.org/10.22201/igc.20072902e.2025.2.1846

Citas en Dimensions Service

Share on

Abstract

Studies of pore structure and permeability in volcanic rocks are important in the research of geothermal, water, and hydrocarbon reservoirs, as well as for the management of volcanic risks. The present study aims to contribute to a better understanding of the pore space and permeability of volcanic rocks, using surficial rock samples from Los Humeros volcanic complex, which hosts a geothermal field, as a case study. For this, several experimental techniques are used for the samples’ characterization, such as porosimetry, permeametry, X-ray diffraction, and X-ray fluorescence, whereas images of scanning electron microscopy and X-ray microtomography are used to study the pore space and permeability. The results indicate that, in the studied volcanic rocks, the effect of size or scale is more relevant than the use of different techniques to obtain porosity. On the other hand, the experimentally measured permeabilities reveal relatively high values, whose connectivity only begins to be detected from resolutions of 10 µm/voxel, which corroborates previous studies. This finding is of great importance as the results indicate that a significant number of small pores (≤ 10 µm/voxel, in this case) contribute considerably to fluid flow transport, and consequently to the permeability. All this has significant potential consequences for the exploitation of the Los Humeros geothermal field.

https://doi.org/10.22201/igc.20072902e.2025.2.1846
PDF (Español (España))
HTML (Español (España))

References

Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., & Zhan, X. (2013). Digital rockphysics benchmarks—part II:Computing effective properties. Computers & Geosciences, 50, 33–43. doi:10.1016/j.cageo.2012.09.008

Arellano, V. M., Gracía, A., Barragán, R. M., Izqueierdo, G., Aragón, A., & Nieva, D. (2003). An updated conceptual model of the Los Humeros geothermal reservoir (Mexico). Journal of Volcanology and Geothermal Research, 124(1-2), 67–88. doi:10.1016/S0377-0273(03)00045-3

Arteaga, D. (2018). Análisis multiescalar de porosidad y permeabilidad de un intervalo permeable usando microtomografía de rayos X, caso de estudio campo geotérmico Los Humeros [Tesis de Licenciatura]. Universidad Nacional Autónoma de México.

Arzate, J., Corbo-Camargo, F., Carrasco-Núñez, G., Hernández, J., & Yutsis, V. (2018). The Los Humeros (Mexico) geothermal field model deduced from new geophysical and geological data. Geothermics, 71, 200–211. doi:10.1016/j.geothermics.2017.09.009

ASTM International. (2013). Standard Test Method for Permeability of Rocks by Flowing Air (ASTM D4525-13e2). ASTM International. https://doi.org/10.1520/D4525-13E02

ASTM International. (2019). Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances (ASTM D4543-19). ASTM International. https://doi.org/10.1520/D4543-19

Becker, M., Lima, E. F., Waichel, B. L., & Mantovani, I. F. (2019). Pore system quantification and characterization in volcanic rocks: a case study from the Lower Cretaceous Serra Geral Group, Paraná Basin, Southern Brazil. Journal of Petroleum Geology, 42(3), 301–317. doi:10.1111/jpg.12735

Buono, G., Caliro, S., Macedonio, G., Allocca, V., Gamba, F., & Pappalardo, L. (2023), Exploring microstructure and petrophysical properties of microporous volcanic rocks through 3D multiscale and super-resolution imaging. Scientific Reports, 13, 6651(1–14). doi:10.1038/s41598-023-33687-x

Campos-Enriquez , J. O., & Arredondo-Fragoso, J. J. (1992). Gravity study of Los Humeros caldera complex, Mexico: Structure and associated geothermal system. Journal of Volcanology and Geothermal Research, 49(1-2), 69-90. doi:10.1016/0377-0273(92)90005-X

Carrasco-Núñez, G., Gomez-Tuena, A., & Lozano, L. (1997). Geologic map of Cerro Grande volcano and surrounding area, Central Mexico. Geological Society of America Maps and Chart, series MHC 81.

Carrasco-Nuñez, G., Siebert, L., Díaz-Castellón, R., Vázquez-Selem, L., & Capra, L. (2010). Evolution and hazards of a long-quiescent compound shield-like volcano: Cofre de Perote, Eastern Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 197(1-4), 209–224. doi:10.1016/j.jvolgeores.2009.08.010

Carrasco-Núñez, G., Hernández, J., De León, L., Dávila-Harris, H. P., Norini, G., Bernal, J. P., Jicha, B., Navarro, M., López-Quiroz, P. (2017a). Geologic map of Los Humeros volcanic complex and geothermal field, eastern Trans-Mexican Volcanic Belt. Terra Digitalis. International e-journal of Maps, 1-2, 1-11. doi:10.22201/igg.terradigitalis.2017.2.24

Carrasco-Núñez, G., López-Martínez, M., Hernández, J., & Vargas, V. (2017b). Subsurface stratigraphy and its correlation with the surficial geology at Los Humeros geothermal field, Eastern Trans-Mexican Volcanic Belt. Geothermics, 67, 1–17. doi:10.1016/j.geothermics.2017.01.001

Carrasco-Núñez , G., Bernal, J. P., Dávila-Harris, H. P., Jicha, B., Giordano, G., & Hernández, J. (2018). Reappraisal of Los Humeros Volcanic Complex by New U/Th Zircon and 40Ar/39Ar Dating: Implications for Greater Geothermal Potential. Geochemistry, Geophysics, Geosystems, 19(1), 132–149. doi:doi.org/10.1002/2017GC007044

Cavazos-Álvarez, J. A., & Carrasco-Núñez, G. (2020). Anatomy of the Xáltipan ignimbrite at Los Humeros Volcanic Complex; the largest eruption of the Trans-Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 392, 106755. doi:10.1016/j.jvolgeores.2019.106755

Cid, H. E., Carrasco-Núñez, G., & Manea, V. C. (2017). Improved method for effective rock microporosity estimation using usingX-ray microtomography. Micron, 97, 11–21. doi:10.1016/j.micron.2017.01.003

Cid, H. E., Carrasco-Núñez, G., Manea, V. C., Vega, S., & Castaño, V. (2021). The role of microporosity on the permeability of volcanic-hosted geothermal reservoirs: A case study from Los Humeros, Mexico. Geothermics, 90(102020), 102020-1-102020-23. doi:10.1016/j.geothermics.2020.102020

Corbo-Camargo, F., Arzate, J., Fregoso, E., Norini, G., Carrasco-Núñez, G., Yutsis, V., Herrera, J., & Hernández, J. (2020). Shallow structure of Los Humeros (LH) caldera and geothermal reservoir from magnetotellurics and potential field data. Geophysical Journal International, 223(1), 666–675. doi:10.1093/gji/ggaa338

Damazo, B. N., Ming, B., Purushotham, P. K., Vladár, A. E., & Postek, M. T. (2011). Accurate Nanometer-Scale Imaging and Measurements with SEM. Portland, Oregon (USA), 11th IEEE International Conference on Nanotechnology, (pp. 776-779).

Dávila-Harris, H. P., & Carrasco-Núñez, G. (2014). An unusual syn-eruptive bimodal eruption: The Holocene Cuicuiltic Member at Los Humeros caldera, Mexico. Journal of Volcanology and Geothermal Research, 271, 24–42. doi:10.1016/j.jvolgeores.2013.11.020

Desbarats, A. J., Boyle, D. R., Stapinsky, M., & Robin, M. L. (1999). A dual-porosity model for water level response to atmospheric loading in wells tapping fractured rock aquifers. Water Resources Research, 35(5), 1495–1505. doi:10.1029/1998WR90011

Farquharson, J., Heap, M. J., Varley, N. R., Baud, P., & Reuschlé, T. (2015). Permeability and porosity relationships of edifice-forming andesites: A combined field and laboratory study: Journal of Volcanology and Geothermal Research, 297, 52–68. doi:10.1016/j.jvolgeores.2015.03.016

Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522-523, 22–149. doi:10.1016/j.tecto.2011.09.018

Ferriz, H., & Mahood, G. A. (1984). Eruption rates and compositional trends at Los Humeros Volcanic Center, Puebla, Mexico. Journal of Geophysical Research: Solid Earth, 89(B-10), 8511–8524. doi:10.1029/JB089iB10p0851

Gutiérrez-Negrín, L. C., Izquierdo-Montalvo, G., & Aragón-Aguilar, A. (2010). Review and update of the main features of the Los Humeros geothermal field, Mexico: GRC Transactions, 34, 771–777.

Harlow, F. H., & Welch, J. E. (1965). Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids, 8, 2182–2189. doi:10.1063/1.1761178

Heap, M. J., Bayramov, K., Meyer, G. G., Violay, M. S., Reuschlé, T., Baud, P., Gilg, H. A., Harnett, C. E., Kushnir, A. R. L., Lazari, F., & Mortensen, A. K. (2024). Compaction and Permeability Evolution of Tuffs From Krafla Volcano (Iceland). Journal of Geophysical Research: Solid Earth, 129(8), 1–27. doi:10.1029/2024JB029067

Heinrich, M., Cronin, S. J., Torres-Orozco, R., Colombier, M., Scheu, B., & Pardo, N. (2020). Micro-porous pyroclasts reflecting multi-vent basaltic-andesite Plinian eruptions at Mt. Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 401, 1–17. doi:10.1016/j.jvolgeores.2020.106936

Hubbard, C. R., & Synder, R. L. (1988). RIR - Measurement and Use in Quantitative XRD. Powder Diffraction, 3(2), 74–77. doi: 10.1017/S0885715600013257

Huerta-Luna, G. (2018). Caracterización geológica y geoquímica de subsuelo del Campo Geotérmico Los Humeros, Puebla, México: caso de estudio, Pozo H-50 [Tesis de Ingeniería]. Instituto Politécnico Nacional. Escuela Superior de Ingeniería y Arquitectura Unidad Ticomán

Joseph, J., Kuntikana, G., & Singhb, D. N. (2019) Investigations on gas permeability in porous media. Journal of Natural Gas Science and Engineering, 64, 81–92. doi:10.1016/j.jngse.2019.01.017

Karimpouli, S., Faraji, A., Balcewicz, M., & Saenger, E. H. (2020). Computing heterogeneous core sample velocity using Digital Rock Physics: A multiscale approach. Computers and Geosciences, 135, 1–10. doi:10.1016/j.cageo.2019.104378

Konecny, P., & Kozusnikova, A. (2011). Influence of stress on the permeability of coal and sedimentary rocks of the Upper Silesianbasin. International Journal of Rock Mechanics y Mining Sciences, 48, 347–352. doi:10.1016/j.ijrmms.2010.11.017

Liedl, A., Buono, G., Lanzafame, G., Dabagov, S. B., Della Ventura, G., Hampai, D.,

Mancini, L., Marcelli, A., & Pappalardo, L. (2019). A 3D imaging textural characterization of pyroclastic products from the 1538 AD Monte Nuovo eruption (Campi Flegrei, Italy). Lithos, 340-341, 316–331. doi:10.1016/j.lithos.2019.05.010

Liu, C., Buono G., Pappalardo, L, Shan, X., Yi, J., Shi, Y., & Ventura, G. (2023) X-ray computed microtomography revealing the effects of volcanic, alteration, and burial processes on the pore structure of rocks from unconventional reservoirs (Songliao Basin, NE China). Geoenergy Science and Engineering, 226, 211781(1–13). doi:10.1016/j.geoen.2023.211781

Madonna, C., Almqvist, B. S., & Saenger, E. H. (2012). Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophysical Journal International, 189, 1475–1482. doi:10.1111/j.1365-246X.2012.05437.x

Pardo, N., Cronin, S. J., Wright, H. M., Schipper, C. I., Smith, I., & Stewart, B. (2014). Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu. Bulletin of Volcanology, 76, 1–19. doi:10.1007/s00445-014-0822-x

Pola, A., Herrera-Díaz, A., Tinoco-Martínez, S. R., Macias, J. L., Soto-Rodríguez, A. N., Soto-Herrera, A. M., Sereno, H., & Avellán, D. R. (2024). Rock characterization, UAV photogrammetry and use of algorithms of machine learning as tools in mapping discontinuities and characterizing rock masses in Acoculco Caldera Complex. Bulletin of Engineering Geology and the Environment, 83, 1–19. doi:10.1007/s10064-024-03743-5

Ramírez-Guzmán, Á., Pola, A., Macias, J. L., Soto-Herrera, A. M., Avellán, D. R., Pacheco-Valdovinos, P. M., & Martínez-Martínez, J. (2024). The influence of alteration and fractures on gas permeability and mechanical properties of the sedimentary and volcanic rocks of the Acoculco Caldera Complex (México). Bulletin of Engineering Geology and the Environment, 83, 1–16. doi:10.1007/s10064-023-03522-8

Rojas-Ortega, E. (2016). Litoestratigrafía, petrografía y geoquímica de la toba Llano, y su relación con el cráter el Xalapazco, Caldera de Los Humeros, Puebla. [Instituto Potosino de Investigación, Científica y Tecnológica Tesis de Maestría].

Rotella, M. D., Wilson, C. J., Barker, S. J., Cashman, K. V., Houghton, B. F., & Wright, I. C. (2014). Bubble development in explosive silicic eruptions: insights from pyroclast vesicularity textures from Raoul volcano (Kermadec arc). Bulletin of Volcanology, 76, 1–24. doi:10.1007/s00445-014-0826-6

Sánchez-Núñez, J. M., Pola, A., Cisneros, G., Sereno, H. I., Serrano-Flores, M. E., Jiménez, L. Á., & Rodríguez, P. (2021). Physical-mechanical behavior of fresh and completely altered rocks as an important factor of slope instability in the El Rosario Monarch Butterfly Sanctuary, Michoacán, Mexico. Revista Mexicana de Ciencias Geológicas, 38(3), 272–282. doi:10.22201/cgeo.20072902e.2021.3.1674

Schlüter, S., Sheppard, A., Brown, K., & Wildenschild, D. (2014). Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resources Research, 50, 3615–3639. doi: 10.1002/2014WR015256

Skokan, C. K., & Ibrahim, A. (1978). Research on the physical properties of geothermal reservoir rock. Colorado School of Mines, Department of Geophysics, Quarterly report.

Sruoga, P., Rubinstein, N., & Hinterwimmer, G. (2004). Porosity and permeability in volcanic rocks: a case study on the Serie Tobı́fera, South Patagonia, Argentina. Journal of Volcanology and Geothermal Research, 132(1), 31–43. doi:10.1016/S0377-0273(03)00419-0

Tian, W., Lu, S., Li, J., Wang, W., Li, J., & Wen, Z. (2022). Insights into the pore structure and pore development pattern of subaqueous volcanic rocks in the Santanghu Basin, western China: Marine and Petroleum Geology, 135(105387). doi:10.1016/j.marpetgeo.2021.105387

Torres-Orozco, R., Cronin, S. J., Damaschke, M., & Pardo, N. (2017). Diverse dynamics of Holocene mafic-intermediate Plinian eruptions at Mt. Taranaki (Egmont), New Zealand. Bulletin of Volcanology, 79, 3–27. doi:10.1007/s00445-017-1162-4

Torres-Orozco, R., Cronin, S. J., Pardo, N., Kósik, S., Ukstins, I., Heinrich, M., & Lee, P. D. (2023). Complex decompression and fragmentation of mingled andesite magmas driving multi-phase Plinian eruptions at Mt. Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 433(107728), 1-28. doi:10.1016/j.jvolgeores.2022.107728

Torres-Orozco, R., Capra, L., Márquez-Ramírez, V. H., Sosa-Ceballos, G., De Plaen, R. S., Cid, H. E., Sulpizio, R., & Arámbula-Mendoza, R. (2024). Andesite magma genesis, conduit dynamics and variable decompression from shallow reservoirs drive contrasting PDC events at Volcán de Colima, Mexico. Journal of Volcanology and Geothermal Research, 453, 1–23. doi:10.1016/j.jvolgeores.2024.108143

Asociación Española de Normalización. (2007). Métodos de ensayo para piedra natural. Determinación de la densidad real y aparente y de la porosidad abierta y total (Norma UNE-EN 1936:2007). Asociación Española de Normalización.

Vairé, E., Heap, M. J., Baud, P., & van Wyk de Vries, B. (2024). Quantifying the physical and mechanical heterogeneity of porous volcanic rocks from the Chaîne des Puys (Massif Central, France). Bulletin of Volcanology, 86(5). doi:10.1007/s00445-024-01742-8

Valentinuzzi, M. C. (2008). Análisis por fluorescencia de rayos X: implementación de guías de haces en reflexión total. [Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, Tesis Doctoral].

Whitaker, S. (1999). The method of volume averaging. Theory and applications of trasnport in porous media (Vol. 13). Dordrecht: Springer Dordrecht. doi:10.1007/978-94-017-3389-2

Yáñez-García, C., & García-Durán, S. (1982). Exploración de la región geotérmica Los Humeros–Las Derrumbadas, Estados de Puebla y Veracruz. Mexico, D.F. Comisión Federal de Electricidad.

Zahasky, C., Thomas, D., Matter, J., Maher, K., & Benson, S. M. (2018). Multimodal imaging and stochastic percolation simulation for improved quantification of effective porosity and surface area in vesicular basalt. Advances in Water Resources, 121, 235–244. doi:10.1016/j.advwatres.2018.08.009

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Sandra Vega, Jonathan de la Rosa-Maldonado, Irving Reyna-Bustos , Gerardo Carrasco-Núñez

Downloads

Download data is not yet available.