Resumen
Los lahares son flujos destructivos ligados a áreas volcánicas, compuestos de agua y material piroclástico, capaces de recorrer largas distancias a altas velocidades. Simular su dinámica es crucial para la evaluación de peligros y la mitigación de riesgos; sin embargo, esto sigue siendo complejo debido a factores tales como la incertidumbre de los parámetros, la escasez de datos de calibración y la variabilidad topográfica del terreno. Los enfoques actuales para su evaluación abarcan desde métodos empíricos hasta simulaciones numéricas avanzadas promediadas en profundidad, donde la resistencia al flujo se representa típicamente mediante modelos reológicos. Las formulaciones comunes incluyen la ecuación de Manning, el modelo de fricción de Voellmy y la reología plástica de Bingham, cada una de las cuales captura diferentes aspectos del comportamiento del flujo no newtoniano. Este estudio evalúa el rendimiento de varios modelos reológicos en la reconstrucción del evento de lahar ocurrido en 2001 en el volcán Popocatépetl (México) utilizando el módulo no newtoniano mejorado de la herramienta de modelado hidrodinámico Iber (Iber-NNF). Los resultados muestran que la elección del modelo afecta significativamente la precisión de la simulación. Los modelos tipo Manning tuvieron un rendimiento deficiente, lo que pone de relieve las limitaciones de los términos de resistencia dependiente de la velocidad para capturar el comportamiento estático del flujo.
Citas
Aranda, J. Á , Beneyto, C., Sánchez-Juny, M., Bladé, E. (2021). Efficient Design of Road Drainage Systems. Water, 13(12), 1661. https://doi.org/10.3390/w13121661
Arcement, G. J., & Schneider, V. R. (1989). Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. United States Geological Survey Water-Supply Paper 2339. https://doi.org/10.3133/wsp2339
Bakkehøi, S., Cheng, T., Domaas, U., Lied, K., Perla, R., & Schieldrop, B. (1981). On the computation of parameters that model snow avalanche motion. Canadian Geotechnical Journal, 18(1), 121–130. https://doi.org/10.1139/t81-011
Barberi, F., Caruso, P., Macedonio, G., Pareschi, M. T., & Rosi, M. (1992). Reconstruction and numerical simulation of the lahar of the 1877 eruption of Cotopaxi volcano (Ecuador). Acta Vulcanologica, 2, 35–44.
Bartelt, P., Valero, C. V., Feistl, T., Christen, M., Bühler, Y., & Buser, O. (2015). Modelling cohesion in snow avalanche flow. Journal of Glaciology, 61(229), 837–850. https://doi.org/10.3189/2015JoG14J126
Bingham, E. C. (1916). An investigation of the laws of plastic flow. Bulletin of the Bureau of Standards, 13(2), 309–353. https://doi.org/10.6028/bulletin.304
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., & Coll, A. (2014a). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004
Bladé, E., Cea, L., & Corestein, G. (2014b). Modelización numérica de inundaciones fluviales. Ingeniería Del Agua, 18(1), 68. https://doi.org/10.4995/ia.2014.3144
Bladé, E., Sánchez-Juny, M., Arbat, M., & Dolz, J. (2019). Computational Modeling of Fine Sediment Relocation Within a Dam Reservoir by Means of Artificial Flood Generation in a Reservoir Cascade. Water Resources Research, 55(4), 3156–3170. https://doi.org/10.1029/2018WR024434
Bonasia, R., Turchi, A., Madonia, P., Fornaciai, A., Favalli, M., Gioia, A., & Traglia, F. Di. (2022). Modelling Erosion and Floods in Volcanic Environment : The Case Study of the Island of Vulcano ( Aeolian Archipelago, Italy). Sustainability, 14(24), 16549. https://doi.org/10.3390/su142416549
Brugnot, G. (2000). SAME Avalanche mapping, model validation and warning systems. Office for European Commision. Official Publications of the European Communities, Luxemburg.
Buser, O., & Frutiger, H. (1980). Observed Maximum Run-Out Distance of Snow Avalanches and the Determination of the Friction Coefficients µ and ξ. Journal of Glaciology, 26(94), 121–130. https://doi.org/10.3189/S0022143000010662
Caballero, L., & Capra, L. (2014). The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001 lahar scenario. Natural Hazards and Earth System Sciences, 14(12), 3345–3355. https://doi.org/10.5194/nhess-14-3345-2014
Capra, L., Poblete, M. A., & Alvarado, R. (2004). The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazards. Journal of Volcanology and Geothermal Research, 131(3–4), 351–369. https://doi.org/10.1016/S0377-0273(03)00413-X
Cea, L., & Bladé, E. (2015). A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resources Research, 51(7), 5464–5486. https://doi.org/10.1002/2014WR016547
Chen, H., & Lee, C. F. (2002). Runout Analysis of Slurry Flows with Bingham Model. Journal of Geotechnical and Geoenvironmental Engineering, 128(12), 1032–1042. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(1032)
Chow, V. Te. (1959). Open-Channel Hydraulics. In Open Channel Hydraulics. McGraw-Hill Book Company Inc. New York, USA.
Cordonnier, B., Lev, E., & Garel, F. (2016). Benchmarking lava-flow models. Geological Society Special Publication, 426(1), 425–445. https://doi.org/10.1144/SP426.7
Costa, J. E. (1997). Hydraulic modeling for lahar hazards at cascades volcanoes. Environmental and Engineering Geoscience, 3(1), 21–30. https://doi.org/10.2113/gseegeosci.iii.1.21
Costabile, P., Cea, L., Barbaro, G., Costanzo, C., Llena, M., & Vericat, D. (2024). Evaluation of 2D hydrodynamic-based rainfall/runoff modelling for soil erosion assessment at a seasonal scale. Journal of Hydrology, 130778. https://doi.org/10.1016/j.jhydrol.2024.130778
Courant, R., Friedrichs, K., & Lewy, H. (1967). On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 11, 215–234.
Darnell, A. R., Phillips, J. C., Barclay, J., Herd, R. A., Lovett, A. A., & Cole, P. D. (2013). Developing a simplified geographical information system approach to dilute lahar modelling for rapid hazard assessment. Bulletin of Volcanology, 75(4), 713. https://doi.org/10.1007/s00445-013-0713-6
de’ Michieli Vitturi, M., Esposti Ongaro, T., Lari, G., & Aravena, A. (2019). IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches. Geoscientific Model Development, 12(1), 581–595. https://doi.org/10.5194/gmd-12-581-2019
Dehghan-Souraki, D., López-Gómez, D., Bladé-Castellet, E., Larese, A., & Sanz-Ramos, M. (2024). Optimizing sediment transport models by using the Monte Carlo simulation and deep neural network (DNN): A case study of the Riba-Roja reservoir. Environmental Modelling & Software, 175, 105979. https://doi.org/10.1016/j.envsoft.2024.105979
Dent, J. D., & Lang, T. E. (1982). Experiments on mechanics of flowing snow. Cold Regions Science and Technology, 5(3), 253–258. https://doi.org/10.1016/0165-232X(82)90018-0
Dent, J. D., & Lang, T. E. (1983). A Biviscous Modified Bingham Model of Snow Avalanche Motion. Annals of Glaciology, 4, 42–46. https://doi.org/10.3189/S0260305500005218
Figueroa-García, J. E., Franco-Ramos, O., Bodoque, J. M., Ballesteros-Cánovas, J. A., & Vázquez-Selem, L. (2021). Long-term lahar reconstruction in Jamapa Gorge, Pico de Orizaba (Mexico) based on botanical evidence and numerical modelling. Landslides, 18(10), 3381–3392. https://doi.org/10.1007/s10346-021-01716-3
Franco-Ramos, O., Ballesteros-Cánovas, J. A., Figueroa-García, J. E., Vázquez-Selem, L., Stoffel, M., & Caballero, L. (2020). Modelling the 2012 Lahar in a Sector of Jamapa Gorge (Pico de Orizaba Volcano, Mexico) Using RAMMS and Tree-Ring Evidence. Water, 12(2), 333. https://doi.org/10.3390/w12020333
Guerrero, A., Criollo, R., Córdoba, G., & Rodríguez, D. (2019). A Modeling Approach for Lahar Hazard Assessment: the Case of Tamasagra Sector in the City of Pasto, Colombia. Ingeniería y Ciencia, 15(30), 7–31. https://doi.org/10.17230/ingciencia.15.30.1
Haddad, B., Pastor, M., Palacios, D., & Muñoz-Salinas, E. (2010). A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): Sensitivity analysis and runout simulation. Engineering Geology, 114(3–4), 312–329. https://doi.org/10.1016/j.enggeo.2010.05.009
Haddad, B., Palacios, D., Pastor, M., & Zamorano, J. J. (2016). Smoothed particle hydrodynamic modeling of volcanic debris flows: Application to Huiloac Gorge lahars (Popocatépetl volcano, Mexico). Journal of Volcanology and Geothermal Research, 324, 73–87. https://doi.org/10.1016/j.jvolgeores.2016.05.016
Herschel, W. H., & Bulkley, R. (1926). Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Zeitschrift, 39(4), 291–300. https://doi.org/10.1007/bf01432034
Huggel, C., Kääb, A., Haeberli, W., & Krummenacher, B. (2003). Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Sciences, 3(6), 647–662. https://doi.org/10.5194/nhess-3-647-2003
Innocenti, L., Bladé, E., Sanz-Ramos, M., Ruiz-Villanueva, V., Solari, L., & Aberle, J. (2023). Two-Dimensional Numerical Modeling of Large Wood Transport in Bended Channels Considering Secondary Current Effects. Water Resources Research, 59(12). https://doi.org/10.1029/2022WR034363
Kheirkhah Gildeh, H., Halliday, A., Arenas, A., & Zhang, H. (2021). Tailings Dam Breach Analysis: A Review of Methods, Practices, and Uncertainties. Mine Water and the Environment, 40(1), 128–150. https://doi.org/10.1007/s10230-020-00718-2
Kmetyko, S., Mergili, M., & Palma, J. L. (2024). Numerical modelling of the lahars generated during the 2015 eruption at Volcán Villarrica (Chile). EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9844, 9844. https://doi.org/https://doi.org/10.5194/egusphere-egu24-9844
López-Gómez, D., De Blas-Moncalvillo, M., Castejón-Zapata, M., Gassó-Sánchez, Á., Bladé, E., Sanz-Ramos, M., Dehghan-Souraki, D., Garrote-de Marco, L., Santillán-Sánchez, D., Soria-García, J. M., San Román-Saldaña, J., Galván-Plaza, R., García-Vera, M. Á., & Sánchez-Martínez, J. (2024). Análisis del transporte de sedimentos en el curso bajo del río Ebro mediante modelización numérica de una avenida controlada. Ingeniería Del Agua, 28(4), 246–262. https://doi.org/10.4995/ia.2024.21768
Macedonio, G., & Pareschi, M. T. T. (1992). Numerical simulation of some lahars from Mount St. Helens. Journal of Volcanology and Geothermal Research, 54(1–2), 65–80. https://doi.org/10.1016/0377-0273(92)90115-T
Martin Del Pozzo, A. L., Alatorre Ibargüengoitia, M., Arana Salinas, L., Bonasia, R., Capra Pedol, L., Cassata, W., Códoba, G., Cortés Ramos, J., Delgado Granados, H., Ferrés López, M., Fonseca Álvarez, R., García Reynoso, J. A., Gispert, G., Guerrero López, D. A., Jaimes Viera, M. C., Macías Vázquez, J. L., Nieto Obregón, J., Nieto Torres, A., Paredes Ruiz, P. A., … Tellez Ugalde, E. (2017). Estudios geológicos y actualización del mapa de peligros del volcán Popocatépetl. Memoria técnica del mapa de peligros del volcán Popocatépetl. Monografías del Instituto de Geofísica. Universidad Nacional Autónoma de México. Instituto de Geofísica. México D.F., México.
Martínez-Valdés, J. I., Márquez-Ramírez, V. H., Coviello, V., & Capra, L. (2023). Hurricane-induced lahars at Volcán de Colima (México): seismic characterization and numerical modeling. Revista Mexicana de Ciencias Geológicas, 40(1), 59–70. https://doi.org/10.22201/cgeo.20072902e.2023.1.1709
Mead, S. R., & Magill, C. R. (2017). Probabilistic hazard modelling of rain-triggered lahars. Journal of Applied Volcanology, 6(1), 4–10. https://doi.org/10.1186/s13617-017-0060-y
Msheik, K. (2020). Non-Newtonian Fluids: Modeling and Well-Posedness. Universite Grenoble Alpes, Saint-Martin-d’Hères, France.
Muñoz-Salinas, E., Manea, V. C., Palacios, D., & Castillo-Rodriguez, M. (2007). Estimation of lahar flow velocity on Popocatépetl volcano (Mexico). Geomorphology, 92(1–2), 91–99. https://doi.org/10.1016/j.geomorph.2007.02.011
Muñoz-Salinas, E., Renschler, C. S., Palacios, D., & Namikawa, L. M. (2008). Updating channel morphology in digital elevation models: Lahar assessment for Tenenepanco-Huiloac Gorge, Popocatépetl volcano, Mexico. Natural Hazards, 45(2), 309–320. https://doi.org/10.1007/s11069-007-9162-x
O’Brien, J. S., & Julien, P. Y. (1988). Laboratory Analysis of Mudflow Properties. Journal of Hydraulic Engineering, 114(8), 877–887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
O’Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, 119(2), 244–261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
Olivares-Cerpa, G., Russo, B., Martínez-Puentes, M., Bladé, E., & Sanz-Ramos, M. (2022). “SUDS-lineales” para reducir el riesgo de inundación considerando escenarios de Cambio Climático. Ingeniería Del Agua, 26(2), 77–90. https://doi.org/10.4995/ia.2022.17058
Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic, V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., & Cuomo, S. (2014). Application of a SPH depth-integrated model to landslide run-out analysis. Landslides, 11(5), 793–812. https://doi.org/10.1007/s10346-014-0484-y
Pirulli, M., & Sorbino, G. (2008). Assessing potential debris flow runout: a comparison of two simulation models. Natural Hazards and Earth System Sciences, 8(4), 961–971. https://doi.org/10.5194/nhess-8-961-2008
Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., & Bursik, M. (2003). Computing granular avalanches and landslides. Physics of Fluids, 15(12), 3638–3646. https://doi.org/https://doi.org/10.1063/1.1614253
Ruiz-Villanueva, V., Bladé, E., Sánchez-Juny, M., Marti-Cardona, B., Díez-Herrero, A., & Bodoque, J. M. (2014). Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), 1077. https://doi.org/10.2166/hydro.2014.026
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L., Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo, D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., & Wohl, E. (2019). Characterization of wood-laden flows in rivers. Earth Surface Processes and Landforms, 44(9), 1694–1709. https://doi.org/10.1002/esp.4603
Sanz-Ramos, M., Téllez-Álvarez, J., Bladé, E., & Gómez-Valentín, M. (2019). Simulating the hydrodynamics of sewer-grates using a 2D-hydraulic model. 5th International Conference SimHydro, 8.
Sanz-Ramos, M., Martí-Cardona, B., Bladé, E., Seco, I., Amengual, A., Roux, H., & Romero, R. (2020). NRCS-CN Estimation from Onsite and Remote Sensing Data for Management of a Reservoir in the Eastern Pyrenees. Journal of Hydrologic Engineering, 25(9), 05020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979
Sanz-Ramos, M., Andrade, C. A., Oller, P., Furdada, G., Bladé, E., & Martínez-Gomariz, E. (2021). Reconstructing the Snow Avalanche of Coll de Pal 2018 (SE Pyrenees). GeoHazards, 2(3), 196–211. https://doi.org/10.3390/geohazards2030011
Sanz-Ramos, M., Olivares, G., & Bladé, E. (2022). Experimental characterization and two-dimensional hydraulic-hydrologic modelling of the infiltration process through permeable pavements. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 38(1). https://doi.org/10.23967/j.rimni.2022.03.012
Sanz-Ramos, M., Bladé, E., Oller, P., & Furdada, G. (2023a). Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations. Journal of Glaciology, 1–17. https://doi.org/10.1017/jog.2023.48
Sanz-Ramos, M., Bladé, E., & Sánchez-Juny, M. (2023b). El rol de los términos de fricción y cohesión en la modelización bidimensional de fluidos no Newtonianos: avalanchas de nieve densa. Ingeniería Del Agua, 27(4), 295–310. https://doi.org/10.4995/ia.2023.20080
Sanz-Ramos, M., López-Gómez, D., Bladé, E., & Dehghan-Souraki, D. (2023c). A CUDA Fortran GPU-parallelised hydrodynamic tool for high-resolution and long-term eco-hydraulic modelling. Environmental Modelling & Software, 161(ii), 105628. https://doi.org/10.1016/j.envsoft.2023.105628
Sanz-Ramos, M., Bladé, E., Sánchez-Juny, M., & Dysarz, T. (2024a). Extension of Iber for Simulating Non–Newtonian Shallow Flows: Mine-Tailings Spill Propagation Modelling. Water, 16(14), 2039. https://doi.org/10.3390/w16142039
Sanz-Ramos, M., Bladé, E., Silva-Cancino, N., & Salazar, F. (2024b). Avances en Iber para la clasificación de balsas: proyecto ACROPOLIS. Ingeniería Del Agua, 28(1), 47–63. https://doi.org/10.4995/ia.2024.20609
Sanz-Ramos, M., Vales-Bravo, J. J., Bladé, E., & Sánchez-Juny, M. (2024c). Reconstructing the spill propagation of the Aznalcóllar mine disaster. Mine Water and the Environment, 43(3). https://doi.org/10.1007/s10230-024-01000-5
Sanz-Ramos, M., Sañudo, E., López-Gómez, D., García-Feal, O., Bladé, E., & Cea, L. (2025). Evolución de la modelización numérica bidimensional del flujo en lámina libre a través del software Iber. Ingeniería Del Agua, 29(2), 114–131. https://doi.org/10.4995/ia.2025.23259
Satria, H., Nurfaida, W., Kurniawan, A., Iswardoyo, J., & Sulaiman, M. (2024). Numerical simulation and redesign of Kamar Kajang Levee against Mount Semeru lahar flood based on HEC-RAS 2D non-newtonian flow model. IOP Conference Series: Earth and Environmental Science, 1311(1), 12065. https://doi.org/10.1088/1755-1315/1311/1/012065
Schilling, S. P. (2014). Laharz_py: GIS tools for automated mapping of lahar inundation hazard zones. (Open-File Report 2014-1073) United States Geological Survey. https://doi.org/10.3133/ofr20141073
Schraml, K., Thomschitz, B., McArdell, B. W., Graf, C., & Kaitna, R. (2015). Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Natural Hazards and Earth System Sciences, 15(7), 1483–1492. https://doi.org/10.5194/nhess-15-1483-2015
Sheridan, M. F., Hubbard, B., Carrasco-Núñez, G., & Siebe, C. (2004). Pyroclastic flow hazard at volcán Citlaltépetl. Natural Hazards, 33(2), 209–221. https://doi.org/10.1023/B:NHAZ.0000037028.89829.d1
Syarifuddin, M., Oishi, S., Hapsari, R. I., & Legono, D. (2018). Empirical model for remote monitoring of rain-triggered lahar at Mount Merapi. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 74(4), I_1483-I_1488. https://doi.org/10.2208/jscejhe.74.I_1483
Thouret, J. C., Antoine, S., Magill, C., & Ollier, C. (2020). Lahars and debris flows: Characteristics and impacts. Earth-Science Reviews, 201, 103003. https://doi.org/10.1016/j.earscirev.2019.103003
Tierz, P., Woodhouse, M. J., Phillips, J. C., Sandri, L., Selva, J., Marzocchi, W., & Odbert, H. M. (2017). A Framework for Probabilistic Multi-Hazard Assessment of Rain-Triggered Lahars Using Bayesian Belief Networks. Frontiers in Earth Science, 5. https://doi.org/10.3389/feart.2017.00073
Vera, P., Ortega, P., Casa, E., Santamaría, J., & Hidalgo, X. (2019). Modelación Numérica y Mapas de Afectación por Flujo de Lahares Primarios en el Drenaje Sur del Volcán Cotopaxi. Revista Politécnica, 43(1), 61–72. https://doi.org/10.33333/rp.vol43n1.971
Vignaux, M., & Weir, G. J. (1990). A general model for Mt. Ruapehu lahars. Bulletin of Volcanology, 52(5), 381–390. https://doi.org/10.1007/BF00302050
Voellmy, A. (1955). Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73, 15. https://doi.org/10.5169/seals-61891
Woodhouse, M. J., Johnson, C. G., Hogg, A. J., Phillips, J. C., Espin Bedon, P., Almeida, S., & Andrade, S. D. (2016). A model of lahars for hazard assessment. 9o Conference Cities on Volcanoes, Puerto Varas, Chile, November 20-25, 2016.

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2025 Marcos Sanz-Ramos, Ernest Bladé, Andrés Díez-Herrero, Daniel Vázquez-Tarrío, Julio Garrote, Nieves Sánchez, Ines Galindo






